Random forest algorithm for precision dose prediction in brain cancer radiotherapy

Luqyana Adha Azwat, Prawito Prajitno, Dwi Seno Kuncoro Sihono, Dewa Ngurah Yudhi Persada

Abstract


Improving dose optimization during clinical planning using the treatment planning system for radiotherapy patients is crucial, yet executing this process can be time-consuming and reliant on the expertise of medical physicists. This research focuses on dose prediction employing machine learning for the planning target volume (PTV) and organ at risk (OAR) in cases of brain cancer treated with the volumetric modulated arc therapy planning technique. Utilizing DICOM planning data from brain cancer cases, this study utilizes extracted radiomic and dosiomic values as inputs and outputs for the research, employing a random forest algorithm model. Evaluation of the model reveals its effectiveness in predicting doses for PTV in brain cancer and OAR, with predicted homogeneity index and conformity index values of 0.14 ± 0.04 and 0.95 ± 0.01, respectively, compared to clinical values of 0.14 ± 0.13 and 0.94 ± 0.13. Thus, the random forest model demonstrates proficiency in predicting doses for brain cancer PTV and OAR, with an mean square error value of 0.017.

Keywords


Mean square error; OAR; PTV; p-value; random forest

Full Text:

PDF

References


1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

2. Abdullah, F., Ganiem, A. R., Rasyid, A., Munir, B. & Wiratman, W. (2023). Pedoman praktik klinik neurologi 2023, Department of Neurology.

3. Verbakel, W. F., Cuijpers, J. P., Hoffmans, D., Bieker, M., Slotman, B. J. & Senan, S. (2009). Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. International Journal of Radiation Oncology*Biology*Physics, 74(1), 252–259.

4. Van Herk, M., Remeijer, P., Rasch, C. & Lebesque, J. V. (2000). The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. International Journal of Radiation Oncology*Biology*Physics, 47(4), 1121–1135.

5. Savargiv, M., Masoumi, B., & Keyvanpour, M. R. (2021). A new random forest algorithm based on learning automata. Computational Intelligence and Neuroscience, 2021(1), 5572781.

6. Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2022). Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1), 16.

7. Song, Y., Hu, J., Liu, Y., Hu, H., Huang, Y., Bai, S., & Yi, Z. (2020). Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy. Radiotherapy and Oncology, 149, 111–116.

8. Menzel, H. G. (2012). The international commission on radiation units and measurements. Journal of the ICRU, 12(2), 1–2.

9. International Commission on Radiological Units. (1961). Report of the International Commission on Radiological Units and Measurements (ICRU), 1959 (Vol. 78). US Department of Commerce, National Bureau of Standards.




DOI: http://dx.doi.org/10.31258/jkfi.21.2.183-186

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image