Analysis of temperature patterns in Pekanbaru City using fractals and artificial neural networks based on monthly temperature data

Reynal Nur Razzaq, Defrianto Defrianto

Abstract


Climate and global warming play a crucial role in the lives of living organisms on Earth. Temperature, varying in each region, is a vital aspect in climate observation. This study analyzed temperature fluctuations in Pekanbaru from 2016 to 2022 using fractal analysis and backpropagation artificial neural networks. The research findings revealed that temperature prediction with backpropagation artificial neural networks was quite accurate. However, errors during testing or validation could impact the comparison with the target values. Fractal analysis indicated a persistent tendency in temperature fluctuations in Pekanbaru, with a Hurst exponent of 0.7993 and a fractal dimension of 1.2007. Nevertheless, temperature fluctuations were also influenced by other factors, leading to varying levels of stability over certain periods. Thus, the temperature in Pekanbaru can be considered a complex system with diverse fluctuation patterns and varying levels of complexity.

Keywords


Backpropagation; exponent hurst; fluctuation; fractal dimension

Full Text:

PDF (INDONESIAN)

References


1. Chen, Y., Li, Y., & Mao, L. (2022). Combining the effects of global warming, land use change and dispersal limitations to predict the future distributions of East Asian Cerris Oaks (Quercus Section Cerris, Fagaceae) in China. Forests, 13(3), 367.

2. Boer, R., & Rakiso, P. (2008). Adaptation to climate variability and climate change: Its socio-economic aspect. Proceeding of Workshop on'Climate Change: Impacts, Adaptation, and Policy in South East Asia.

3. Swarinoto, Y. S. (2010). Evaluasi Kehandalan Simulasi Informasi Prakiraan Iklim Musiman Menggunakan Metode ROC (Kasus ZOM 126 Denpasar). Jurnal Meteorologi dan Geofisika, 11(2).

4. Handoko, I., Sugiarto, Y., & Syaukat, Y. (2008). Keterkaitan perubahan iklim dan produksi pangan strategis. Telaah kebijakan independen bidang perdagangan dan pembangunan oleh kemitraan/partnership Indonesia. SEAMEO BIOTROP. Bogor, 34–56.

5. Hermawan, E. (2010). Pengelompokkan Pola Curah Hujan yang terjadi di beberapa kawasan P. Sumatera berbasis hasil analisis teknik spektral. Jurnal Meteorologi dan Geofisika, 11(2).

6. Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., & Schöner, W. (2001). Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(14), 1779–1801.

7. Bakhrun, A. (2013). Perbandingan metode adaline dan backpropagation untuk prediksi jumlah pencari kerja di Jawa Barat. Doctoral dissertation, Universitas Komputer Indonesia.

8. Tyagi, H., Suran, S., & Pattanaik, V. (2016). Weather-temperature pattern prediction and anomaly identification using artificial neural network. International Journal of Computer Applications, 975, 8887.

9. Koutsoyiannis, D. (2021). Rethinking climate, climate change, and their relationship with water. Water, 13(6), 849.

10. Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J., & Shepherd, T. G. (2019). A dynamical perspective on atmospheric temperature variability and its response to climate change. Journal of Climate, 32(6), 1707–1724.

11. Hidayat, U., Prasetyo, S., Haryanto, Y. D., & Riama, N. F. (2021). Pengaruh ENSO Terhadap Curah Hujan dan Kelembapan Relatif serta Suhu Permukaan Laut di Sulawesi. Buletin GAW Bariri (BGB), 2(2), 88–96.

12. Tjasyono, B. H., & Harijono, S. W. B. (2006). Meteorologi Indonesia 2: Awan dan Hujan Monsun. Jakarta: Badan Meteorologi Klimatologi dan Geofisika.

13. Zendrato, E. (2010). Pengukuran kadar gas pencemar nitrogen dioksida (NO2) di udara sekitar kawasan industri Medan. Doctoral dissertation, Universitas Sumatera Utara.

14. Thoibah, A., Defrianto, D., & Saktioto, S. (2023). Pemodelan kecepatan aliran darah pada domain menyerupai pembuluh darah dengan featool multiphysics. Komunikasi Fisika Indonesia, 20(1), 19–24.

15. Tamil, S. S., & Samuel, S. R. (2011). Fractal dimension analysis of northeast monsoon of Tamil Nadu. Journal of Environtmental Research and Technology, 1(2), 219–221.

16. De Vos, J. A., Van Bakel, P. J. T., Hoving, I. E., & Smidt, R. A. (2010). Raising surface water levels in peat areas with dairy farming: Upscaling hydrological, agronomical and economic effects from farm-scale to local scale. Agricultural Water Management, 97(11), 1887–1897.

17. Puspitaningrum, D. (2006). Pengantar jaringan syaraf tiruan. Yogyakarta: Penerbit Andi.

18. Priyanta, I. B. G. B., & Astawa, I. G. S. (2014). Penerapan Jaringan Syaraf Tiruan Dalam Prakiraan Hujan Harian Di Daerah Kuta Selatan Provinsi Bali. Jurnal Ilmiah Ilmu Komputer Universitas Udayana, 7(1).

19. Rufiyanti, D. E. (2015). Implementasi Jaringan Syaraf Tiruan Backpropagation Dengan Input Model Arima Untuk Peramalan Harga Saham. Semarang: Universitas Negeri Semarang.

20. Yunita, Y. (2015). Prediksi Cuaca Menggunakan Metode Neural Network. Paradigma, 17(1), 47–53.

21. Cahyono, B. (2013). Penggunaan Software Matrix Laboratory (MATLAB) dalam pembelajaran aljabar linier. Jurnal Phenomenon, 1(1), 45–62.




DOI: http://dx.doi.org/10.31258/jkfi.21.1.79-90

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image