ANALISA SIFAT ELEKTROKIMIA ELEKTRODA SUPERKAPASITOR BERBASIS KARBON AKTIF DARI KULIT SINGKONG
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation of capacitor’s electrode from cassava peel waste. Bioresource Technology, 101(10), 3534–3540.
2. Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. Journal of power sources, 91(1), 37–50.
3. Liu, C., Li, F., Ma, L. P., & Cheng, H. M. (2010). Advanced materials for energy storage. Advanced materials, 22(8), E28–E62.
4. Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7(5), 1597–1614.
5. Zhang, S., & Pan, N. (2015). Supercapacitors performance evaluation. Advanced Energy Materials, 5(6), 1401401.
. Thomas, P., Lai, C. W., & Johan, M. R. B. (2019). Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 140, 54–85.
7. Kalpana, D., Cho, S. H., Lee, S. B., Lee, Y. S., Misra, R., & Renganathan, N. G. (2009). Recycled waste paper—A new source of raw material for electric double-layer capacitors. Journal of Power Sources, 190(2), 587–591.
8. Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., & Huang, C. (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 155, 706–726.
9. Miller, E. E., Hua, Y., & Tezel, F. H. (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. Journal of Energy Storage, 20, 30–40.
10. Wei, H., Wang, H., Li, A., Li, H., Cui, D., Dong, M., ... & Guo, Z. (2020). Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. Journal of Alloys and Compounds, 820, 153111.
11. Amakoromo, T. E., Abumere, O. E., Amusan, J. A., Anye, V., & Bello, A. (2021). Porous carbon from Manihot Esculenta (cassava) peels waste for charge storage applications. Current Research in Green and Sustainable Chemistry, 4.
12. Barmawi, I., Taer, E., & Umar, A. A. (2011). Efek Penumbuhan Nanopartikel Platinum Pada Elektroda Karbon Terhadap Prestasi Superkapasitor. Jurnal Fisika Himpunan Fisika Indonesia, 11(1), 1–5.
13. Winarno, F. (1990). Singkong dan Pengolahannya. Aksara Baru.
14. Kayiwa, R., Kasedde, H., Lubwama, M., & Kirabira, J. B. (2021). The potential for commercial scale production and application of activated carbon from cassava peels in Africa: A review. Bioresource Technology Reports, 15, 100772.
15. Ikawati, I., & Melati, M. (2010). Pembuatan Karbon Aktif dari Limbah Kulit Singkong UKM Tapioka Kabupaten Pati. Semkarbon: Universitas Diponegoro.
16. Taer, E., Yanti, N., Mustika, W. S., Apriwandi, A., Taslim, R., & Agustino, A. (2020). Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. International Journal of Energy Research, 44(13), 10192–10205.
17. Taer, E., Handayani, R., Apriwandi., Taslim, R., Awitdrus, Amri, A., Agustino, & Iwantono, I. (2019). The synthesis of bridging carbon particles with carbon nanotubes from Areca catechu Husk Waste as supercapacitor electrodes. International Journal of Electrochemical Science, 14, 9436–9448.
18. González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and sustainable energy reviews, 58, 1189–1206.
DOI: http://dx.doi.org/10.31258/jkfi.20.2.115-122
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: