PENGGUNAAN METODE GEOLISTRIK RESISTIVITAS KONFIGURASI SCHLUMBERGER UNTUK MENGETAHUI LAPISAN STRUKTUR LITOLOGI BAWAH TANAH DI TAMAN ILMU UNIVERSITAS RIAU

Aprianturi Rega, Usman Malik

Abstract


Research has been carried out at the Science Park, Riau University to determine the layers of underground lithological structures using the one-dimensional Schlumberger configuration Geoelectric resistivity method. Research data processing is done using Software Progress. The results of data processing show that lanes 1 and 2 consists of layers of alluvium, sand, gravel, and clay. On track 1, the highest soil layer resistivity value of 863.14 m is interpreted as a layer of sand and gravel at a depth of 2.28 - 31.12 m, while the smallest is 226.90 m which can be interpreted as a layer of clay at a depth of 0.68 - 1.28 m. On track 2, the highest soil layer resistivity value of 1027.83 m is interpreted as a layer of sand and gravel at a depth of 0.28 - 1.15 m, while the smallest is 188.08 m interpreted as a clay layer at a depth of 0 - 0.28 m. The highest and lowest resistivity values tend to be identified as sand, gravel, and clay, respectively.

Keywords


Subsurface Layers of the Earth; Lithological Structure; Geoelectrical Method; Schlumberger Configuration

References


1. Mariska, M. & Asriwandari, H. (2017). Pemanfaatan ruang terbuka science park (taman ilmu) Universitas Riau bagi masyarakat sekitarnya. JOM FISIP UNRI, 4(1), 1–15.

2. Arumsari, F., Firzal, Y., & Mira Dharma Susilawati, M. D. (2017). Penerapan arsitektur bioklimatik pada Science Technology Park Universitas Riau. JOM FT UNRI, 4(2), 1–9.

3. Soemarto, C. D. (1987). Hidrologi teknik. Surabaya: Usaha Nasional.

4. Putra, D. & Malik, U. (2021). Identifikasi litologi bawah permukaan menggunakan metode geolistrik konfigurasi dipole-dipole di wisata Hapanasan Desa Pawan Kabupaten Rokan Hulu. Komunikasi Fisika Indonesia, 18(2), 106–110.

5. Riputra, B. Y. & Malik, U. (2021). survei sumber air panas dengan metode geolistrik konfigurasi Wenner (Studi kasus: Wisata air panas Pawan, Pasirpangaraian). Komunikasi Fisika Indonesia, 18(2), 146–150.

6. Bowles, J. E. & Hainim, J. K. (1984). Sifat-sifat fisis dan geoteknis tanah (mekanika tanah). Jakarta: Erlangga.

7. Hanafiah, K. A. (2005). Dasar-dasar ilmu tanah. Jakarta: PT. Raja Grafindo Persada.

8. Wijaya, A. S. (2015). Aplikasi metode geolistrik resisitivitas konfigurasi Wenner untuk menentukan struktur tanah di halaman belakang SCC ITS Surabaya. Jurnal Fisika Indonesia 19(55), 1–5.

9. Nainggolan, M. S. N., Erwin, E., Yanuar, Y., & Malik, U. (2019). Penentuan sifat magnetik pasir dan debu sepanjang jalan Kartama Kota Pekanbaru Menggunakan Magnetic Probe Pasco PS-2162. Komunikasi Fisika Indonesia, 16(1), 12–19.

10. Terzaghi, K. & Peck, R. B. (1987). Mekanika tanah dalam praktek rekayasa. Jakarta: Erlangga.




DOI: http://dx.doi.org/10.31258/jkfi.19.1.35-38

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image