BATAS MEDAN LEMAH PADA GRAVITASI f(T)
Abstract
We derive the field equation of f(T) gravity at the weak field limit obtained by teleparallel Lagrange action of a function of torsion scalar T. The weak field limit in teleparallel gravity is to assume that tetrad experiences small perturbation and ignore the higher order. Tetrad perturbation is equivalent to metric perturbation in general relativity and can be transformed into one another. If we take the special case f(T) = T then the equation will be equivalent to the gravitational field equation obtained by the Einstein-Hilbert action. The equation of fields is simplified using the trace reversed method for metric perturbation and Lorentz gauge condition. The final equation has the form of the wave equation with an additional derivative of function f(T). Technically, this equation is the gravitational waves equation in terms of f(T) gravity. In a vacuum with zero energy and momentum tensor, the field equation reduces to the gravitational waves equation in a vacuum.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Hayashi, K. & Shirafuji, T. (1979). New general relativity. Physical Review D, 19(12), 3524–3553.
2. Aldrovandi, R. & Pereira, J. G. (2013). Teleparallel gravuty. Dordrecht: Springer.
3. Yasmini, L. P. B. (2021). Gravitasi: Gaya vs geometri. Indonesian Physical Review, 4(1), 1–6.
4. Maluf, J. W. (2013). The teleparallel equivalent of general relativity. Annalen der physik, 525(5), 339–357.
5. Ferraro, R. (2012). F(R) and f(T) theories of modified gravity. AIP Conference Proceedings, 1471(103).
6. Cai, Y. F., Capozziello, S., De Laurentis, M., & Saridakis, E. N. (2016). f (T) teleparallel gravity and cosmology. Reports on Progress in Physics, 79(10), 106901.
7. Ferraro, R. & Fiorini, F. (2007). Modified teleparallel gravity: Inflation without Inflation. Rep. Prog. Phys., 79(10), 106901.
8. Palianthanasis, A. (2021). F(T) Cosmology with nonzero curvature. Modern Physics Letters A, 36(38), 2150261.
9. Solanki, J., Joshi, R., & Garg, M. (2021). Analytical stellar models of neutron stars in f(T) gravity. arXiv:2107.01645v2.
10. Fortes, H. G. M. & Araujo, J. C. N. D. (2021). Solving Tolman oppenheimer Volkoff equation in f(T) gravity: A novel approach. arXiv:2105.04473v1.
11. Araujo, J. C. N. D. & Fortes, H. G. M. (2021). Solving Tolman oppenheimer Volkoff equation in f(T) gravity: A novel Approach in applied to polytropic equation of state. arXiv:2105.09118v1.
12. Li, B., Sotiriou, T. P., & Barrow, J. D. (2011). F(T) gravity and local Lorentz invariance. Physical Review D., 83(6), 064035.
13. Otalora, G. & Saridakis, E. N. (2016). Modified teleparallel gravity with higher-derivative torsion terms. Physical Review D., 94(8), 084021.
14. Golovnev, A. (2021). Issues of Lorentz-invariance in f (T) gravity and calculations for spherically symmetric solutions. Classical and Quantum Gravity, 38(19), 197001.
15. Ren, X., Zhao, Y., Saridakis, E. N., & Cai, Y. F. (2021). Deflection angle and lensing signature of covariant ???? (????) gravity. Journal of Cosmology and Astroparticle Physics, 2021(10), 062.
16. Capozziello, S., Capriolo, M., & Caso, L. (2020). Weak field limit and gravitational waves in f (T, B) teleparallel gravity. The European Physical Journal C, 80(2), 1–11.
17. Bamba, K., Capozziello, S., De Laurentis, M., Nojiri, S., & Sáez-Gómez, D. (2013). No further gravitational wave modes in F (T) gravity. Physics Letters B, 727(1-3), 194–198.
18. Eingorn, M. & Zhuk, A. (2011). Weak-field limit of f (R) gravity in three and more spatial dimensions. Physical Review D, 84(2), 024023.
19. Socolovsky, M. (2012). Fiber Bundles, Connections, General Relativity, and the Einstein-Cartan Theory–Part I. Advances in Applied Clifford Algebras, 22(3), 837–872.
20. Miao, R. X., Li, M., & Miao, Y. G. (2011). Violation of the first law of black hole thermodynamics in f (T) gravity. Journal of Cosmology and Astroparticle Physics, 2011(11), 033.
DOI: http://dx.doi.org/10.31258/jkfi.19.1.25-30
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: