PEMBUATAN ELEKTRODA KARBON DARI BIOMASSA SABUT KELAPA MUDA DENGAN AKTIVATOR KOH SEBAGAI APLIKASI SEL SUPERKAPASITOR

Zurya Hanifa, Awitdrus Awitdrus

Abstract


The supercapacitor is a storage device consisting of carbon electrodes, separator, electrolyte, and current collector. Carbon electrodes made from young coconut coir biomass with a mass ratio of 1:0.20 KOH activator have been successfully fabricated with a carbonization temperature of 550 °C and a physical activation temperature of 750 °C. Characterization of physical properties by measuring the density value showed that before and after pyrolysis decreased due to KOH activating agent. Furthermore, the electrochemical characterization using the voltammetry cyclic method showed the specific capacitance value to the scanning rate, where the highest specific capacitance value was 163.14 F/g with a scanning rate of 1 mV/s.


Keywords


Young Coconut Husk; Carbon Electrode; Supercapacitor; Mass Ratio of KOH Activator

References


1. Parinduri, L., & Parinduri, T. (2020). Konversi biomassa sebagai sumber energi terbarukan. JET (Journal of Electrical Technology), 5(2), 88–92.

2. Borghei, S. A., Zare, M. H., Ahmadi, M., Sadeghi, M. H., Marjani, A., Shirazian, S., & Ghadiri, M. (2021). Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arabian Journal of Chemistry, 14(2), 102958.

3. Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393–415.

4. Teng, H., & Hsu, L. Y. (1999). High-porosity carbons prepared from bituminous coal with potassium hydroxide activation. Industrial & engineering chemistry research, 38(8), 2947–2953.

5. Muzaki, M. D. R., Sunarso, S., & Setiadi, A. (2020). Analisis potensi sabut kelapa serta strategi penggunaanya sebagai bahan baku pakan ternak ruminansia. Livestock and Animal Research, 18(3), 274–288.

6. Carrijo, O. A., Liz, R. S. D., & Makishima, N. (2002). Fiber of green coconut shell as an agricultural substrate. Horticultura brasileira, 20, 533–535.

7. Tyas, S. I. S. (2000). Studi netralisasi limbah serbuk sabut kelapa (Cocopeat) sebagai media tanam. Tesis Ilmu Kehutanan, Institut Pertanian Bogor.

8. Lystianingrum, V., Irawan, A., Santoso, I. B., Negara, I. M. Y., & Priyadi, A. (2021). On Feasibility of Ultracapacitor Full Electric Transit Bus for Jakarta, Indonesia. 2021 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), IEEE, 29 September 2021, 102–106.

9. Taer, E., Natalia, K., Apriwandi, A., Taslim, R., Agustino, A., & Farma, R. (2020). The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(2), 025007.

10. Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource technology, 132, 254–261.

11. Ayinla, R. T., Dennis, J. O., Zaid, H. M., Sanusi, Y. K., Usman, F., & Adebayo, L. L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of cleaner production, 229, 1427–1442.

12. Taer, E., Taslim, R., Putri, A. W., Apriwandi, A., & Agustino, A. (2018). Activated carbon electrode made from coconut husk waste for supercapacitor application. Int. J. Electrochem. Sci, 13(12), 12072–12084.

13. Sudibandriyo, M. & Lydia, L. (2018). Karakteristik luas permukaan karbon aktif dari ampas tebu dengan aktivasi kimia. Jurnal Teknik Kimia Indonesia, 10(3), 149–156.

14. Yang, S., Wang, S., Liu, X., & Li, L. (2019). Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon, 147, 540–549.

15. Zhang, W., Xu, J., Hou, D., Yin, J., Liu, D., He, Y., & Lin, H. (2018). Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of colloid and interface science, 530, 338–344.

16. Awitdrus, Deraman, M., Talib, I. A., Farma, R., Omar, R., Ishak, M. M., Taer, E., Dolah, B. N., Basri, N. H., & Nor, N. S. M. (2015). Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke. AIP Conference Proceedings, 1656(1), 030007.

17. Farma, R., Vivi, M., Sugiyanto, S., Awitdrus, A., Taer, E., & Yanuar, H. (2017). Cyclic Voltammetry Sel Superkapasitor Dengan Variasi Konsentrasi Aktivator Kalium Hidroksida. Jurnal Fisika Indonesia, 21(2), 20–24.




DOI: http://dx.doi.org/10.31258/jkfi.19.1.45-50

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image