SIKLIS VOLTAMETRI SEL SUPERKAPASITOR DARI BIOMASSA PELEPAH SALAK

Rakhmawati Farma, Amalia Apriliani Putri, Irma Apriyani

Abstract


Snake fruit midrib (SFM) biomass has the potential to be used as a precursor material for making carbon electrodes because it has a high lignocellulosic content for supercapacitor applications. Carbon electrodes were made from snake fruit midrib biomass using a pre-carbonization process at 200 °C, chemical activation with 0.1 M KOH as an activating agent, a carbonization process with temperature variations of 500 °C, 600 °C, and 700 °C using N2 gas, and a physical activation process at 800 °C with CO2 gas. Thermogravimetric analysis shows the thermal resistance temperature of carbon powder is 317.1 °C. Analysis of the electrochemical properties of supercapacitor cells from snake fruit midrib obtained specific capacitance values of 123.23 F/g, 169.05 F/g, and 213.27 F/g for samples SFM-500, SFM-600, and SFM-700, respectively. The results showed that 700 °C was the best carbonization temperature for carbon electrodes from snake fruit midrib.


Keywords


Carbon Electrode; Snake Fruit Midrib; Carbonization Temperature; Cell Supercapacitor

References


1. Saw, L. H., Poon, H. M., San Thiam, H., Cai, Z., Chong, W. T., Pambudi, N. A., & King, Y. J. (2018). Novel thermal management system using mist cooling for lithium-ion battery packs. Applied energy, 223, 146–158.

2. Saw, L. H., Ye, Y., & Tay, A. A. O. (2014). Feasibility study of Boron Nitride coating on Lithium-ion battery casing. Applied thermal engineering, 73(1), 154–161.

3. Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M. R., Galvin, C. J., Chen, X., Aspuru-Guzik, A., Gordon, R. G., & Aziz, M. J. (2014). A metal-free organic–inorganic aqueous flow battery. Nature, 505(7482), 195–198.

4. Lu, H., & Zhao, X. S. (2017). Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy & Fuels, 1(6), 1265–1281.

5. Choudhary, N., Li, C., Moore, J., Nagaiah, N., Zhai, L., Jung, Y., & Thomas, J. (2017). Asymmetric supercapacitor electrodes and devices. Advanced Materials, 29(21), 1605336.

6. Tetra, O. N. (2018). Superkapasitor berbahan dasar karbon aktif dan larutan ionik sebagai elektrolit. Jurnal Zarah, 6(1), 39–46.

7. Chen, L. F., Yu, Z. Y., Wang, J. J., Li, Q. X., Tan, Z. Q., Zhu, Y. W., & Yu, S. H. (2015). Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy, 11, 119–128.

8. Li, Q., Mu, J., Zhou, J., Zhao, Y., & Zhuo, S. (2019). Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode. Journal of Electroanalytical Chemistry, 832, 284–292.

9. Awitdrus, A., Suwandi, D. A., Agustino, A., Taer, E., & Farma, R. (2021). The production of supercapacitor carbon electrodes based on sugar palm fronds using chemical and physical activation combination. Journal of Aceh Physics Society, 10(3), 66–69.

10. Gao, H., & Li, J. (2019). Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride. Plos one, 14(10), e0224401.

11. Taslim, R., Sari, M. N., & Taer, E. (2017). Studi awal pembuatan karakteristik elektroda superkapasitor dari limbah pelepah kelapa sawit. Proseding Seminar Nasional Fisika Universitas Riau, Universitas Riau, Pekanbaru, 2017, 180–184.

12. Triyastiti, L., & Krisdiyanto, D. (2017, November). Isolasi Nanoselulosa Dari Pelepah Pohon Salak Sebagai Filler Pada Film Berbasis Polivinil Alkohol (PVA). Prosiding Seminar Nasional Kulit, Karet dan Plastik, 6(1), 223–236.

13. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781–1788.

14. Farma, R., Oktaviandari, M., & Asyana, V. (2021). Effect of carbonized temperature to supercapacitor electrode from palm midrib biomass. Journal of Aceh Physics Society, 10(1), 21–25.

15. Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of environmental management, 113, 170–183.

16. Awitdrus, A., Suwandi, D. A., Agustino, A., Taer, E., & Farma, R. (2021). The production of supercapacitor carbon electrodes based on sugar palm fronds using chemical and physical activation combination. Journal of Aceh Physics Society, 10(3), 66–69.




DOI: http://dx.doi.org/10.31258/jkfi.19.1.19-24

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image