INTEGRASI CHIRPING DAN APODISASI BAHAN TOPAS UNTUK PENINGKATAN KINERJA SENSOR SERAT KISI BRAGG

Khaikal Ramadhan, Saktioto Saktioto

Abstract


Penemuan fiber Bragg grating (FBG) merupakan tonggak awal perkembangan teknologi serat optik, seperti pada komunikasi optik hingga pemantauan struktur kesehatan material sebagai sensor. Untuk komunikasi optik komponen FBG mampu memfilter sinyal-sinyal tertentu. Dalam sensor optik FBG memiliki sensitivitas yang tinggi kebal terhadap interferensi gelombang elektromagnetik, ukuran yang kecil dan tahan terhadap konidis lingkungan yang ekstrim. Sensitivitas sensor FBG diperoleh dari pergeseran puncak panjang gelombang Bragg tiap besaran suhu dan regangan. Walaupun demikian kinerja sensor FBG dapat ditingkatkan dengan merekayasa distribusi indeks bias pada kisi dengan fungsi apodisasi dan chirp. Apodisasi merupakan salah satu teknik dalam meningkatkan kinerja sensor FBG dengan menghilangkan noise, mempersempit full wave half maximum, menurunkan lobus samping dari lobus utama dan memperbaiki factor riak spektrum. Selain apodisasi fungsi chirp juga berpengaruh terhadap sensitivitas sensor dan distribusi indeks bias pada kisi. Eksperimen numerik dilakukan dalam merancang komponen FBG sebagai sensor dengan menggunakan apodisasi Gaussian dan bahan Topas cyclic olefin copolymer untuk beberapa fungsi chirp. Diperoleh hasil bahwa FBG Topas apodisasi Gaussian untuk semua fungsi chirp sebagai sensor regangan memiliki sensitivitas yang sama yaitu 0.84 pm/µstrain sementara untuk sensor suhu diperoleh sensitivitas tertinggi pada cubic root chirp 13,82857 pm/°C diikuti oleh square chirp 13,74286 pm/°C, Quadratic chirp 13,71429 pm/°C dan Linear Chirp 13,4 pm/°C pergeseran panjang gelombang Bragg lebih besar untuk 1 °C daripada untuk 1 µstrain.


Keywords


FBG; Topas; Gaussian; Apodisasi; Chirp

References


1. Tahhan, S. R., Ali, M. H., & Abass, A. K. (2020). Characteristics of dispersion compensation for 32 channels at 40 Gb/s under different techniques. Journal of Optical Communications, 41(1), 57–65.

2. Irawan, D., Ali, J., & Fadhali, M. (2013). Birefringence analysis of directional fiber coupler induced by fusion and coupling parameters. Optik-International Journal for Light and Electron Optics, 124(17), 3063–3066.

3. Navruz, I. & Guler, N. F. (2008). A novel technique for optical dense comb filters using sampled fiber Bragg gratings. Optical Fiber Technology, 14(2), 114–118.

4. Murthy, C. S. R. & Gurusamy, M. (2002). WDM optical networks: concepts, design, and algorithms. Prentice Hall.

5. Tahir, B. A., Ali Saktioto, J., Fadhali, M., Rahman, R. A., & Ahmed, A. (2008). A study of FBG sensor and electrical strain gauge for strain measurements. Journal of optoelectronics and advanced materials, 10(10), 2564–2568.

6. Yang, X., Luo, S., Chen, Z., Ng, J. H., & Lu, C. (2007). Fiber Bragg grating strain sensor based on fiber laser. Optics communications, 271(1), 203–206.

7. Vendittozzi, C., Felli, F., & Lupi, C. (2018). Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness. Optical Fiber Technology, 42, 84–91.

8. Daud, S., Jalil, M. A., Najmee, S., Saktioto, S., Ali, J., & Yupapin, P. P. (2011). Development of FBG sensing system for outdoor temperature environment. Procedia Engineering, 8, 386–392.

9. Jahan, M. I., Honnungar, R. V., & Versha, R. (2018). Analysis of FBG sensor for accurate pressure sensing with improved sensitivity. Materials Today: Proceedings, 5(2), 5452–5458.

10. Kashyap, R. (2009). Fiber bragg gratings. Academic press.

11. Issatayeva, A., Beisenova, A., Tosi, D., & Molardi, C. (2020). Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors, 20(12), 3408.

12. Dziuda, L., Skibniewski, F. W., Krej, M., & Lewandowski, J. (2012). Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Transactions on Biomedical Engineering, 59(7), 1934–1942.

13. Chen, C., Wu, Q., Xiong, K., Zhai, H., Yoshikawa, N., & Wang, R. (2020). Hybrid temperature and stress monitoring of woven fabric thermoplastic composite using fiber Bragg grating based sensing technique. Sensors, 20(11), 3081.

14. Tahhan, S. R., Ali, M. H., Al-Ogaidi, M. A. Z., & Abass, A. K. (2019). Impact of Apodization Profile on Performance of Fiber Bragg Grating Strain-Temperature Sensor. J. Commun., 14(1), 53–57.

15. El-Gammal, H. M., El-Badawy, E. S. A., Rizk, M. R., & Aly, M. H. (2020). A new hybrid FBG with a π-shift for temperature sensing in overhead high voltage transmission lines. Optical and Quantum Electronics, 52(1), 1–24.

16. CR, U. K., Samiappan, D., Kumar, R., & Sudhakar, T. (2020). Development and experimental validation of a Nuttall apodized fiber Bragg Grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature. Optical Fiber Technology, 56, 102176.

17. Zhou, X., Zhou, Y., Li, Z., Bi, M., Yang, G., & Wang, T. (2019). Research on temperature sensing characteristics with cascaded fiber Sagnac interferometer and fiber Fabry–Perot interferometer-based fiber laser. Optical Engineering, 58(5), 057103.

18. Irawan, D., Saktioto, T., Ali, J., & Yupapin, P. (2015). Design of Mach-Zehnder interferometer and ring resonator for biochemical sensing. Photonic Sensors, 5(1), 12–18.

19. Ying, Y., Hu, N., Si, G. Y., Xu, K., Liu, N., & Zhao, J. Z. (2019). Magnetic field and temperature sensor based on D-shaped photonic crystal fiber. Optik, 176, 309–314.

20. Syahputra, R. F. & Meri, R. (2017). Profile of single mode fiber coupler combining with Bragg grating. Telkomnika, 15(3), 1103–1107.

21. Reddy, P. S., PRASAD, R. N. S., Sengupta, D., Shankar, M. S., & Srimannarayana, K. (2010). Teflon-coated fiber Bragg grating sensor for wide range of temperature measurements. Journal of Optoelectronics and Advanced Materials, 12, 2040–2043.

22. Jin, X., Yuan, S., & Chen, J. (2019). On crack propagation monitoring by using reflection spectra of AFBG and UFBG sensors. Sensors and Actuators A: Physical, 285, 491–500.

23. Van Delden, J. S. (1995). Optical circulators improve bidirectional fiber systems. Laser focus world, 31(11), 109–112.

24. Djohan, N. & No, J. T. D. R. (2009). Soliton dalam Serat Optik. Universitas Kristen Krida Wacana, Jakarta.

25. Sari, D. M. (2010). Kajian karakteristik rugi-rugi pada serat Optik Telkom karena pembengkokan Makro.

26. Measures, R. M. (2001). Structural monitoring with fiber optic technology. Academic Press, Inc.

27. Xu, M. G., Archambault, J. L., Reekie, L., & Dakin, J. P. (1994). Thermally-compensated bending gauge using surface-mounted fibre gratings. International Journal of Optoelectronics, 9(3), 281–283.

28. Blackman, R. B. & Tukey, J. W. (1985). The measurement of power spectra. New York: Dover Publications.

29. Mohammed, N. A., Ali, T. A., & Aly, M. H. (2013). Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles. AIP Advances, 3(12), 122125.

30. CR, U. K., Samiappan, D., Kumar, R., & Sudhakar, T. (2020). Development and experimental validation of a Nuttall apodized fiber Bragg Grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature. Optical Fiber Technology, 56, 102176.

31. Bundgaard, F., Perozziello, G., & Geschke, O. (2006). Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(11), 1625–1632.

32. Khanarian, G. (2001). Optical properties of cyclic olefin copolymers. Optical Engineering, 40(6), 1024–1029.




DOI: http://dx.doi.org/10.31258/jkfi.18.2.111-123

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image