KARAKTERISASI SIFAT ELEKTROKIMIA ELEKTRODA KARBON BERBAHAN PELEPAH AREN MENGGUNAKAN LARUTAN ELEKTROLIT Na2SO4
Abstract
The electrical energy crisis occurs due to the availability of non-renewable sources of electrical energy. The focus of research is currently developing on how to store electrical energy using biomass energy. This study aims to analyze the electrochemical properties of the palm frond based carbon electrode using electrolyte solution of Na2SO4. Pre-carbonization of palm fronds was carried out using an electric oven with a temperature of 100 °C – 250 °C for 2 hours. Chemical activation using KOH activating agent with a concentration of 0.3 M at 80 °C for 2 hours. Carbonization was carried out at a temperature of 600 °C using an N2 gas environment and followed by a chemical activation process using CO2 gas at a temperature of 850 °C for 2.5 hours. Na2SO4 with a concentration of 0.5 M is used as a solution in the manufacture of supercapacitor cells. The scanning rate is inversely proportional to the specific capacitance value generated. Characterization of electrochemical properties was carried out using the cyclic voltammetry method resulting in a specific capacitance value of 61.71 F/g for a scan rate of 1 mV/s, 57.93 F/g for scan rate of 2 mV/s and 51.37 F/g for scan rate of 5 mV/s.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Vangari, M., Pryor, T., & Jiang, L. (2013). Supercapacitors: review of materials and fabrication methods. Journal of Energy Engineering, 139(2), 72–79.
2. Indonesia, A., & Effendi, D. S. Prospek Pengembangan Tanaman Aren (Arenga pinnata Merr) Mendukung Kebutuhan Bioetanol di Indonesia.
3. Suswono. (2014). Pedoman Budidaya Aren (Arenga Pinnata) yang Baik. Permentan, Jakarta.
4. Sebayang, L. (2016). Keragaan eksisting tanaman Aren (Arenga pinnata Merr) di Sumatera Utara (Peluang dan Potensi Pengembangannya). Jurnal Pertanian Tropik, 3(2), 133–138.
5. Sahari, J., Sapuan, S. M., Ismarrubie, Z. N., & Rahman, M. Z. A. (2012). Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres & Textiles in Eastern Europe, 2(91), 21–24.
6. Xiong, G., Meng, C., Reifenberger, R. G., Irazoqui, P. P., & Fisher, T. S. (2014). A review of graphene‐based electrochemical microsupercapacitors. Electroanalysis, 26(1), 30–51.
7. Kötz, R. & Carlen, M. J. E. A. (2000). Principles and applications of electrochemical capacitors. Electrochimica acta, 45(15-16), 2483–2498.
8. Lestari, A. N. I., Farma, R., Asyana, V., & Awitdrus, A. (2020). Fabrikasi dan karakterisasi elektroda karbon dari biomassa serabut buah nipah dengan variasi konsentrasi aktivator KOH. Komunikasi Fisika Indonesia, 17(3), 127–133.
9. Taer, E., Alrifani, Z., & Taslim, R. (2018). Pengaruh temperatur aktivasi fisika terhadap kinerja superkakasitor berbasis elektroda karbon dari ampas sagu. Komunikasi Fisika Indonesia, 15(2), 126–130.
10. Zhang, L. L. & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531.
11. Hidayat, T., Dewi, R., & Hamzah, Y. (2021). Effect of holding time on optical structure properties of Ba (Zr0. 5ti0. 5) O3 thin film using sol-gel method. Science, Technology & Communication Journal, 1(2), 59–66.
12. Saputrina, T. T., Iwantono, I., Awitdrus, A., & Umar, A. A. (2020). Performances of dye-sensitized solar cell (DSSC) with working electrode of aluminum-doped ZnO nanorods. Science, Technology & Communication Journal, 1(1), 1–7.
13. Zhong, C., Deng, Y., Hu, W., Sun, D., Han, X., Qiao, J., & Zhang, J. (2016). Electrolytes for electrochemical supercapacitors. USA: CRC press.
14. Yu, A., Chabot, and J. Zhang. (2013). Electrochemical Supercapacitor for Energy Storage and Delivery: Fundamentals and Applications. USA: CRC Press.
15. Tetra, O. N. (2018). Superkapasitor Berbahan Dasar Karbon Aktif Dan Larutan Ionik Sebagai Elektrolit. Jurnal Zarah, 6(1), 39–46.
16. Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource technology, 132, 254–261.
17. Zakir, M., Kasim, H., Raya, I., Lamba, Y., & Jorge, A. B. (2019). Performance of Candlenut Shell (Alleuretus moluccana) Based Supercapacitor Electrode with Acid Electrolytes and Their Salts. In IOP Conference Series: Materials Science and Engineering, 619(1), 012042.
18. Sudhan, N., Subramani, K., Karnan, M., Ilayaraja, N., & Sathish, M. (2017). Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy & Fuels, 31(1), 977–985.
19. Frackowiak, E. (2006). Supercapacitors based on carbon materials and ionic liquids. Journal of the Brazilian Chemical Society, 17(6), 1074–1082.
20. Qu, D. (2002). Studies of the activated carbons used in double-layer supercapacitors. Journal of power sources, 109(2), 403–411.
DOI: http://dx.doi.org/10.31258/jkfi.18.1.88-92
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: