Zinc- and strontium-doped hydroxyapatite: A comparative review of synthesis, characterization, and biomedical applications

Elvina Putri

Abstract


Hydroxyapatite (HA) is a ceramic material similar to the inorganic part of bone and can be synthesized in a laboratory environment using various methods. The structure of HA allows for ionic substitutions that modify its characteristics, particularly in terms of biological, antibacterial, and mechanical properties. In this review, the effects of doping HA with zinc (Zn) and strontium (Sr) ions are comprehensively discussed. Zn-doped HA has been extensively studied as a coating material, as a constituent of composites, and in tissue engineering scaffolds. This review summarizes the synthesis methods, sintering parameters, and crystal morphology of Zn-doped HAs. The lattice parameters, crystal size, phase composition, and specific Fourier-transform infrared spectroscopy (FTIR) bands detected for Zn-doped HA were collected. Sr-doped HA has also been widely used in various biological applications. The effects of Sr doping on the chemical composition, crystallinity, lattice parameters, morphology, and formation energies of HA were investigated. Overall, ionic doping is an effective strategy for modifying the properties of HA for biomedical applications. The selection of the doping ion and the synthesis method plays a crucial role in determining the properties and performance of HA.

Keywords


Crystallization; doping; hydroxyapatite; strontium; zinc

Full Text:

PDF

References


1. Mehta, A. & Singh, G. (2023). Consequences of hydroxyapatite doping using plasma spray to implant biomaterials. J. Electrochem. Sci. Eng., 13.

2. Suci, I. A. & Ngapa, Y. D. (2020). Sintesis dan karakterisasi hidroksiapatit (HAp) dari cangkang kerang ale-ale menggunakan metode presipitasi double stirring. Journal of Applied Chemistry, 8(2).

3. Bulina, N. V., Eremina, N. V., Vinokurova, O. B., Ishchenko, A. V., & Chaikina, M. V. (2022). Diffusion of copper ions in the lattice of substituted hydroxyapatite during heat treatment. Materials, 15(16), 5759.

4. Prosolov, K. A., Lastovka, V. V., Khimich, M. A., Chebodaeva, V. V., Khlusov, I. A., & Sharkeev, Y. P. (2022). RF magnetron sputtering of substituted hydroxyapatite for deposition of biocoatings. Materials, 15.

5. Yuan, Q., Wan, L., Wu, J., & Xu, A. (2020). Investigation of the effect of doped Zn atom to the hydroxyapatite based on experimental method and first-principles calculations. J. Aust. Ceram. Soc., 56(4).

6. Ammar, H., Nasr, S., Ageorges, H., & Salem, E. B. (2020). Sintering and mechanical properties of magnesium containing hydroxyfluorapatite. Journal of the Australian Ceramic Society, 56(3).

7. Anandhakumari, G., Jayabal, P., Balasankar, A., Ramasundaram, S., Oh, T. H., Aruchamy, K., Kallem, P., & Polisetti, V. (2023). Synthesis of strontium oxide-zinc oxide nanocomposites by Co-precipitation method and its application for degradation of malachite green dye under direct sunlight. Heliyon, 9(10).

8. Obada, D. O., Salami, K. A., Oyedeji, A. N., Fasanya, O. O., Suleiman, M. U., Ibisola, B. A., Atta, A. Y., Dodoo-Arhin, D., Kuburi, L. S., Dauda, M., & Dauda, E. T. (2021). Solution combustion synthesis of strontium-doped hydroxyapatite: effect of sintering and low compaction pressure on the mechanical properties and physiological stability. Mater. Lett., 304.

9. Baldassarre, F., Altomare, A., Mesto, E., Lacalamita, M., Dida, B., Mele, A., Bauer, E. M., Puzone, M., Tempesta, E., Capelli, D., Siliqi, D., & Capitelli, F. (2023). Structural characterization of low-Sr-doped hydroxyapatite obtained by solid-state synthesis. Crystals, 13(1), 117.

10. Codrea, C. I., Lincu, D., & Ficai, A. (2024). Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration. Materi, 17.

11. Suzuki, O., Shiwaku, Y., & Hamai, R. (2020). Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dental Materials Journal, 39(2), 187–199.

12. Ravi, N. D., Balu, R., & Sampath Kumar, T. S. (2012). Strontium‐substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. Journal of the American Ceramic Society, 95(9), 2700.

13. Hossain, M. S., Tarannum, S., & Ahmed, S. (2024). Synthesis of pure and Cd-doped hydroxyapatite for the photo-catalytic degradation of Amoxicillin and Ciprofloxacin: Crystallographic characterization using XRD. Journal of Hazardous Materials Advances, 13.

14. Mardziah, C. M., Ramesh, S., & Purbolaksono, J. J. C. I. (2020). Effect of zinc ions on the structural characteristics of hydroxyapatite bioceramics. Ceram. Int., 46(9), 13945.

15. Qu, X., Yang, H., & Dai, K. (2021). Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioactive Materials, 6(12).

16. Wang, J., Wang, R., & Xu, D. (2022). Understanding zinc-doped hydroxyapatite structures using first-principles calculations and convolutional neural network algorithm. J. Mater. Chem. B, 10.

17. Reger, N. C., Bhargava, A. K., & Balla, V. K. (2019). Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications. Ceram. Int., 45.

18. Le Thi, B., Long, B. D., & Ramesh, S. (2022). Nanocrystalline hydroxyapatite prepared at different precursor concentrations: thermal stability, morphology and in vitro cellular response. Ceram-Silikaty, 66(1), 19–27.

19. Zhou, Z., Wang, Q., & Li, Z. (2020). Strontium Doped Hydroxyapatite Nanoparticles: Synthesis, Characterization and Simulation. J. Inorg. Mater., 35(11).

20. Uysal, I., Yilmaz, B., & Evis, Z. (2021). Zn-doped hydroxyapatite in biomedical applications. Journal of the Australian Ceramic Society, 57(3), 869–897.

21. Robles-Águila, M. J., Reyes-Avendaño, J. A., & Mendoza, M. E. (2017). Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method. Ceram. Int., 43(15).

22. Hassan, M., Sulaiman, M., Yuvaraju, P. D., Galiwango, E., Rehman, I. U., Al-Marzouqi, A. H., Khaleel, A., & Mohsin, S. (2022). Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration. Journal of Functional Biomaterials, 13(1), 13.

23. Mahmood, B. K., Kaygili, O., & İnce, T. (2020). Effects of strontium-erbium co-doping on the structural properties of hydroxyapatite: An Experimental and theoretical study. Ceramics International, 46(10), 16354.

24. Bootchanont, A., Wechprasit, T., & Saisopa, T. (2022). Correlation of the antibacterial activity and local structure in Zn-and Mn-doped hydroxyapatites by Rietveld refinement and the first-principles method. Materialia, 26, 101586.

25. Garbo, C., Locs, J., & Tomoaia-Cotisel, M. (2020). Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. Int. J. Nanomed., 1037–1058.

26. Kareem, R. O., Kaygili, O., & Ercan, I. (2022). Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International, 48(22), 33440–33454.

27. Otsuka, Y., Rawal, A., & Kikuchi, M. (2025). Structural transformations in mechanochemically-synthesized strontium-doped hydroxyapatite. Ceramics International, 51(19), 28073–28082.

28. Zhu, Z., Yang, Y., & Zhou, X. (2022). Strontium-doped hydroxyapatite as an efficient adsorbent for Cd (II) removal from wastewater: Performance, kinetics, and mechanism. Environmental Technology & Innovation, 28, 102575.




DOI: http://dx.doi.org/10.31258/jkfi.22.3.259-266

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image