Design and electromagnetic simulation of rhombus-shaped split ring resonator metamaterials for telecommunication antenna applications
Abstract
Keywords
Full Text:
PDFReferences
1. Schmidt, R. & Webb, A. (2017). Metamaterial combining electric-and magnetic. ACS Appl. Mater. Interfaces, 9.
2. Defrianto, D., Saktioto, S., & Emrinaldi, T. (2024). Analysis and modelling of the characteristics of telecommunication antennas utilising metamaterials with a circular structure. Indones. Phys. Commun.
3. Defrianto, D., Saktioto, S., Anita, S., Zahroh, S., & Soerbakti, Y. (2024). Perancangan dan simulasi antena telekomunikasi berdasarkan karakteristik metamaterial struktur lingkaran. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1002.
4. Saktioto, S., Siregar, F. H., & Anita, S. (2024). Excellent integration of a multi-SRR-hexagonal DNG metamaterial into an inverted triangle top microstrip antenna for 5G technology applications at 3.5 GHz. Przeglad Elektrotechniczny, 2024(1), 130.
5. Tao, Y., Yang, E., & Wang, G. (2017). Left-handed metamaterial lens applicator. Appl. Comput. Electromagn. Soc. J., 32.
6. Saktioto, S., Angraini, C. Y. T., Soerbakti, Y., Rini, A. S., Syamsudhuha, S., & Anita, S. (2025). Design and optimization of square SRR metamaterial-based microstrip antenna for wideband biomedical sensing. Science, Technology, and Communication Journal, 6(1), 7–16.
7. Amalia, R., Saktioto, S., & Soerbakti, Y. (2024). Simulasi dan analisis sifat metamaterial struktur segitiga pada frekuensi gelombang mikro untuk aplikasi sensor medis. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1001.
8. Amalia, R., Defrianto, D., & Abdullah, H. Y. (2024). Simulation and analysis of triangular structure metamaterial properties at microwave frequencies for medical sensor applications. Sci. Technol. Commun. J., 5(1), 15–20.
9. Lai, A., Leong, K. M., & Itoh, T. (2007). Infinite wavelength resonant antennas. IEEE Trans. Antennas Propag., 55 (3).
10. Angraini, C. Y. T., Saktioto, S., & Soerbakti, Y. (2024). Rancangan dan simulasi metamaterial struktur persegi empat sebagai aplikasi antena. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1003.
11. Rizwan, Y. F., Saktioto, S., & Soerbakti, Y. (2024). Perancangan struktur metamaterial segi empat pada frekuensi GHz untuk aplikasi antena mikro. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1004.
12. Soerbakti, Y., Defrianto, D., & Asyana, V. (2023). Performance analysis of metamaterial antennas based on variations in combination and radius of hexagonal SRR. Sci. Technol. Commun. J., 4(1), 1–4.
13. Goswami, S., Sarmah, K., & Baruah, S. (2016). Slot loaded square patch antenna with CSRR at ground plane. MicroCom, 1.
14. Soerbakti, Y., Gamal, M. D. H., & Syahputra, R. F. (2024). Negative refractive index anomaly characteristics of SRR hexagonal array metamaterials. Sci. Technol. Commun. J., 4(2), 63–68.
15. Gamal, M. D. H., Soerbakti, Y., & Saktioto, S. (2020). Investigasi karakteristik anomali indeks bias negatif metamaterial array struktur split ring resonator. Prosiding SNFUR-5, 5(1), 1010.
16. Syahputra, R. F., Soerbakti, Y., & Saktioto, S. (2020). Effect of stripline number on resonant frequency of hexagonal split ring resonator metamaterial. J. Aceh Phys. Soc., 9(1), 26.
17. Kumar, A., Gupta, N., & Gautam, P. C. (2016). Gain and bandwidth enhancement techniques. Int. J. Comput. Appl., 148(7).
18. Saktioto, S., Soerbakti, Y., & Okfalisa, O. (2022). Improvement of low-profile microstrip antenna performance by hexagonal. Alex. Eng. J., 61(6), 4241.
19. Defrianto, D., Soerbakti, Y., & Saktioto, S. (2020). Analisis kinerja antena berdasarkan pengaruh variasi kombinasi. Prosiding SNFUR-5, 5(1), 1004.
20. Soerbakti, Y., Syahputra, R. F., & Gamal, M. D. H. (2020). Investigasi kinerja antena berdasarkan dispersi anomali metamaterial. Komunikasi Fisika Indonesia, 17(2), 74.
21. Suci, D. N. & Muldarisnur, M. (2021). Optimasi filter gelombang mikro berbasis metamaterial. Jurnal Fisika Unand, 10(2).
22. Defrianto, D. Saktioto, S., & Soerbakti, Y. (2025). Exploration of analyte electrolyticity using multi-SRR-hexagonal dng metamaterials and ZnO thin films. Indones. J. Electr. Eng. Inform., 13(2).
23. Saktioto, S., Soerbakti, Y., & Rati, Y. (2024). Extreme DNG metamaterial integrated by multi-SRR-square and ZnO thin film for early detection of analyte electrolyticity. Przeglad Elektrotechniczny.
24. Saktioto, S., Soerbakti, Y., & Rati, Y. (2024). Effectiveness of adding ZnO thin films to metamaterial structures as sensors. Indonesian Physics Communication, 21(1).
25. Soerbakti, Y., Saktioto, S., & Rati, Y. (2024). Optimization of semiconductor-based SRR metamaterials as sensors. Journal of Physics: Conference Series.
26. Soerbakti, Y., Saktioto, S., & Rini, A. S.. (2022). A review - Integrasi lapisan tipis ZnO pada aplikasi metamaterial sebagai wujud potensi sensor ultra-sensitif dan multi-deteksi. Prosiding SNFUR-7, 7(1).
27. Jacob, J. K., Vasudevan, D., & Paul. B. J. (2019). Miniaturization of patch antenna using SRR and CSRR. Int. Res. J. Eng. Technol., 6(6), 870–874.
28. Buragohain, A., Das, G. S., & Doloi, T. (2023). Highly sensitive differential hexagonal split ring resonator sensor. Sens. Actuators A: Phys., 363, 114704.
29. Dong, Y. & Itoh, T. (2012). Metamaterial-based antennas. Proc. IEEE, 100(7), 2271.
DOI: http://dx.doi.org/10.31258/jkfi.22.3.179-184
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by:







