Design and electromagnetic simulation of rhombus-shaped split ring resonator metamaterials for telecommunication antenna applications

Saktioto Saktioto, Yan Fatma Rizwan, Yan Soerbakti, Ari Sulistyo Rini, Syamsudhuha Syamsudhuha, Sofia Anita

Abstract


This research presents the design, simulation, and characterization of rhombus-shaped split ring resonator (SRR) metamaterials integrated into microstrip antennas to enhance bandwidth and gain performance. The proposed metamaterial consists of one to four SRR unit cells fabricated using copper on an FR-4 substrate (ɛr = 4.3). Electromagnetic simulations were performed using CST Studio Suite within the 0.009 – 9 GHz frequency range, followed by post-processing and material parameter extraction using the Nicolson-Ross-Weir (NRW) method in MATLAB. The analysis revealed that the four-cell SRR configuration exhibited double-negative (DNG) behavior with relative permittivity εr = -96.21, relative permeability μr = -11.65, and refractive index n = -8.49. Integration of this metamaterial into the microstrip antenna resulted in significant performance enhancement, achieving a return loss of -48.31 dB, a bandwidth of 4.37 GHz, an operating frequency of 5.24 GHz, and a gain of 2.23 dBi. These results confirm that the rhombus SRR metamaterial structure effectively improves electromagnetic wave confinement and power transmission efficiency, demonstrating strong potential for advanced telecommunication and sensor applications.

Keywords


Metamaterial; microstrip antenna; rhombus; split ring resonator; telecommunication

Full Text:

PDF

References


1. Schmidt, R. & Webb, A. (2017). Metamaterial combining electric-and magnetic. ACS Appl. Mater. Interfaces, 9.

2. Defrianto, D., Saktioto, S., & Emrinaldi, T. (2024). Analysis and modelling of the characteristics of telecommunication antennas utilising metamaterials with a circular structure. Indones. Phys. Commun.

3. Defrianto, D., Saktioto, S., Anita, S., Zahroh, S., & Soerbakti, Y. (2024). Perancangan dan simulasi antena telekomunikasi berdasarkan karakteristik metamaterial struktur lingkaran. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1002.

4. Saktioto, S., Siregar, F. H., & Anita, S. (2024). Excellent integration of a multi-SRR-hexagonal DNG metamaterial into an inverted triangle top microstrip antenna for 5G technology applications at 3.5 GHz. Przeglad Elektrotechniczny, 2024(1), 130.

5. Tao, Y., Yang, E., & Wang, G. (2017). Left-handed metamaterial lens applicator. Appl. Comput. Electromagn. Soc. J., 32.

6. Saktioto, S., Angraini, C. Y. T., Soerbakti, Y., Rini, A. S., Syamsudhuha, S., & Anita, S. (2025). Design and optimization of square SRR metamaterial-based microstrip antenna for wideband biomedical sensing. Science, Technology, and Communication Journal, 6(1), 7–16.

7. Amalia, R., Saktioto, S., & Soerbakti, Y. (2024). Simulasi dan analisis sifat metamaterial struktur segitiga pada frekuensi gelombang mikro untuk aplikasi sensor medis. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1001.

8. Amalia, R., Defrianto, D., & Abdullah, H. Y. (2024). Simulation and analysis of triangular structure metamaterial properties at microwave frequencies for medical sensor applications. Sci. Technol. Commun. J., 5(1), 15–20.

9. Lai, A., Leong, K. M., & Itoh, T. (2007). Infinite wavelength resonant antennas. IEEE Trans. Antennas Propag., 55 (3).

10. Angraini, C. Y. T., Saktioto, S., & Soerbakti, Y. (2024). Rancangan dan simulasi metamaterial struktur persegi empat sebagai aplikasi antena. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1003.

11. Rizwan, Y. F., Saktioto, S., & Soerbakti, Y. (2024). Perancangan struktur metamaterial segi empat pada frekuensi GHz untuk aplikasi antena mikro. Prosiding Seminar Nasional Fisika Universitas Riau Ke-IX (SNFUR-9), 9(1), 1004.

12. Soerbakti, Y., Defrianto, D., & Asyana, V. (2023). Performance analysis of metamaterial antennas based on variations in combination and radius of hexagonal SRR. Sci. Technol. Commun. J., 4(1), 1–4.

13. Goswami, S., Sarmah, K., & Baruah, S. (2016). Slot loaded square patch antenna with CSRR at ground plane. MicroCom, 1.

14. Soerbakti, Y., Gamal, M. D. H., & Syahputra, R. F. (2024). Negative refractive index anomaly characteristics of SRR hexagonal array metamaterials. Sci. Technol. Commun. J., 4(2), 63–68.

15. Gamal, M. D. H., Soerbakti, Y., & Saktioto, S. (2020). Investigasi karakteristik anomali indeks bias negatif metamaterial array struktur split ring resonator. Prosiding SNFUR-5, 5(1), 1010.

16. Syahputra, R. F., Soerbakti, Y., & Saktioto, S. (2020). Effect of stripline number on resonant frequency of hexagonal split ring resonator metamaterial. J. Aceh Phys. Soc., 9(1), 26.

17. Kumar, A., Gupta, N., & Gautam, P. C. (2016). Gain and bandwidth enhancement techniques. Int. J. Comput. Appl., 148(7).

18. Saktioto, S., Soerbakti, Y., & Okfalisa, O. (2022). Improvement of low-profile microstrip antenna performance by hexagonal. Alex. Eng. J., 61(6), 4241.

19. Defrianto, D., Soerbakti, Y., & Saktioto, S. (2020). Analisis kinerja antena berdasarkan pengaruh variasi kombinasi. Prosiding SNFUR-5, 5(1), 1004.

20. Soerbakti, Y., Syahputra, R. F., & Gamal, M. D. H. (2020). Investigasi kinerja antena berdasarkan dispersi anomali metamaterial. Komunikasi Fisika Indonesia, 17(2), 74.

21. Suci, D. N. & Muldarisnur, M. (2021). Optimasi filter gelombang mikro berbasis metamaterial. Jurnal Fisika Unand, 10(2).

22. Defrianto, D. Saktioto, S., & Soerbakti, Y. (2025). Exploration of analyte electrolyticity using multi-SRR-hexagonal dng metamaterials and ZnO thin films. Indones. J. Electr. Eng. Inform., 13(2).

23. Saktioto, S., Soerbakti, Y., & Rati, Y. (2024). Extreme DNG metamaterial integrated by multi-SRR-square and ZnO thin film for early detection of analyte electrolyticity. Przeglad Elektrotechniczny.

24. Saktioto, S., Soerbakti, Y., & Rati, Y. (2024). Effectiveness of adding ZnO thin films to metamaterial structures as sensors. Indonesian Physics Communication, 21(1).

25. Soerbakti, Y., Saktioto, S., & Rati, Y. (2024). Optimization of semiconductor-based SRR metamaterials as sensors. Journal of Physics: Conference Series.

26. Soerbakti, Y., Saktioto, S., & Rini, A. S.. (2022). A review - Integrasi lapisan tipis ZnO pada aplikasi metamaterial sebagai wujud potensi sensor ultra-sensitif dan multi-deteksi. Prosiding SNFUR-7, 7(1).

27. Jacob, J. K., Vasudevan, D., & Paul. B. J. (2019). Miniaturization of patch antenna using SRR and CSRR. Int. Res. J. Eng. Technol., 6(6), 870–874.

28. Buragohain, A., Das, G. S., & Doloi, T. (2023). Highly sensitive differential hexagonal split ring resonator sensor. Sens. Actuators A: Phys., 363, 114704.

29. Dong, Y. & Itoh, T. (2012). Metamaterial-based antennas. Proc. IEEE, 100(7), 2271.




DOI: http://dx.doi.org/10.31258/jkfi.22.3.179-184

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image