Physical and structure properties of QS-P2O5-CaO-BaO-Gd2O3/GdF3 glasses medium doped with europium (III)
Abstract
Keywords
Full Text:
PDFReferences
1. Panggabean, J. H., Sihombing, L. W., Rajagukguk, J., Sarumaha, C. S., & Kaewkhao, J. (2024). Effect of Boric Oxide Compounds on the Physical Properties and Structure of “Huta Ginjang” Quartz Sand-Based Glass Medium. Journal of Physics: Conference Series, 2908(1), 012008.
2. Ji, G., Peng, X., Wang, S., Li, J., Sun, K., & Chi, H. (2024). Influence of ground quartz sand finesses on the formation of poorly ordered calcium silicate hydrate prepared by dynamically hydrothermal synthesis. Case Studies in Construction Materials, 20, e02746.
3. Dawngliana, K. M. S., Fanai, A. L., & Rai, S. (2024). Structural and Spectroscopic properties of Eu3+ doped SiO2–TiO2 nanoparticles for photonic applications. Optical Materials, 152, 115470.
4. Shablinskii, A. P., Povolotskiy, A. V., Yuriev, A. A., Biryukov, Y. P., Bubnova, R. S., Avdontceva, M. S., Janson, S. Y., & Filatov, S. K. (2023). Novel red-emitting BaBi2B4O10: Eu3+ phosphors: Synthesis, crystal structure and luminescence. Symmetry, 15(4), 918.
5. Alomari, A. H. (2024). BaO-doped Na2O–CaO–P2O5 bioactive glasses: A closer look at radiation attenuation properties for medical applications. Radiation Physics and Chemistry, 223, 112019.
6. Nishikawa, A., Shiratori, D., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2025). Scintillation light yields of Ce-doped BaO-SiO2-P2O5 glasses synthesized by the melt-quenching method. Solid State Sciences, 160, 107807.
7. Liu, L., Shao, X., Zhang, Z., Liu, J., Hu, Y., & Zhu, C. (2023). Spectral properties and self-reduction of Eu3+ to Eu2+ in aluminosilicate oxyfluoride glass. RSC Advances, 13(34), 23708–23715.
8. Ngara, Z. S. (2022). Sintesis dan Kajian Sifat Optik dan Pola-Pola Difraksi Sinar-X Senyawa Kompleks 1, 10 Phenanthroline. Jurnal Fisika: Fisika Sains dan Aplikasinya, 7(2), 27–30.
9. Raju, D. S., Bindu, S. H., Krishna, J. S., Krishna, V. V., & Raju, C. L. (2021). Synthesis and structural analysis of trivalent europium (Eu3+) ions doped oxyfluoride (ZnBiNaPSr) glasses as prominent host materials for optical devices. Journal of Physics: Conference Series, 1913(1), 012011.
10. Meejitpaisan, P., Kaewjaeng, S., Ruangthaweep, Y., Sangwarantee, N., & Kaewkhao, J. (2021). White light emission of gadolinium calcium phosphate oxide and oxyfluoride glasses doped with Dy3+. Materials Today: Proceedings, 43, 2574–2587.
11. Hutahaean, J., Tambunan, F. E. F., Rajagukguk, J., Sarumaha, C. S., & Kaewkhao, J. (2024). Quartz Sand “Huta Ginjang” on Physical Properties and Structure of Phosphate Glass Medium. Journal of Physics: Conference Series, 2908(1), 012009.
12. Bakruddin, B., Rachmatillah, F., Amri, A., & Jalil, Z. (2020). Identifikasi Kandungan Unsur pada Pasir Kuarsa Menggunakan Metode X-Ray Flourescence di Kecamatan Samadua, Aceh Selatan: Identification of Elemental Contents in Quartz Sand Using the X-Ray Flourescence Method in Samadua District, South Aceh. Jurnal Jejaring Matematika dan Sains, 2(2), 32–35.
13. Borek, K., Czapik, P., & Dachowski, R. (2020). Recycled glass as a substitute for quartz sand in silicate products. Materials, 13(5), 1030.
14. Li, L., & Fan, Z. (2024). Optoelectronic Materials and Devices. Small Methods, 8(2).
15. Yang, X., Gao, D., Yu, J., Zhang, X., Pang, Q., Chai, R., & Yun, S. (2024). Strong Red Luminescence in Europium Complexes Solution for Anti‐Counterfeiting Applications. Luminescence, 39(11), e70012.
16. Ellerbrock, R., Stein, M., & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12(1), 11708.
17. Lee, S. M., Lee, S. H., & Roh, J. S. (2021). Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis. Crystals, 11(2), 153.
18. Wang, Y., Chen, W., Liu, Y., Peng, H., Wang, J., & Su, X. (2023). Synergistic effect of Strontium and Melt quenching on the Solidification Microstructure of Hypereutectic Al-Si alloys. Materials, 16(18), 6188.
19. Touidjine, S., Boulkadid, M. K., Trache, D., Louafi, E., Akbi, H., Belkhiri, S., & Nourine, M. (2023). Dual influence of nano barium oxide on thermal decomposition reaction kinetics and chemical stability of cellulose nitrate. Cellulose, 30(9), 5503–5518.
20. Liu, L., Shao, X., Zhang, Z., Liu, J., Hu, Y., & Zhu, C. (2023). Spectral properties and self-reduction of Eu3+ to Eu2+ in aluminosilicate oxyfluoride glass. RSC Advances, 13(34), 23708–23715.
21. Gedara, S. M. K., Ding, Z. Y., Balasooriya, I. L., Han, Y., & Wickramaratne, M. N. (2022). Hydrothermal synthesis and in vivo fluorescent bioimaging application of Eu3+/Gd3+ co-doped fluoroapatite nanocrystals. Journal of Functional Biomaterials, 13(3), 108.
22. Wantana, N., Kaewnuam, E., Ruangtaweep, Y., Kidkhunthod, P., Kim, H. J., Kothan, S., & Kaewkhao, J. (2020). High density tungsten gadolinium borate glasses doped with Eu3+ ion for photonic and scintillator applications. Radiation Physics and Chemistry, 172, 108868.
23. Schwartz, N. R. (2014). Design of a Light-Weight Low-Volume High Oxygen Storage Density Material. Thesis, Chemical Engineering, Florida Institute of Technology.
24. Revathy, J. S., Abraham, M., Jagannath, G., Mohapatra, S. K., Pandey, M. K., Annapurna, K., Rajendran, D. N., & Das, S. (2024). Correlated structural and optical properties of crystal-engineered Eu3+-doped gadolinium oxyfluoride polymorphs compatible for lighting and display applications. Ceramics International, 50(4), 6769–6783.
25. Zhao, J., Nienhuis, E. T., McCloy, J. S., & Du, J. (2020). Structures of fluoride containing aluminosilicate low activity nuclear waste glasses: A molecular dynamics simulations study. Journal of Non-Crystalline Solids, 550, 120379.
26. Righini, G. C. (2025). Editorial for the Glassy Materials and Micro/Nano Devices Section. Micromachines, 16(2), 117.
27. Ovide, O. C. (2022). Identifying and Minimizing Sources of Variability Within Modern Spectroscopic Techniques for the Forensic Analysis of Glass. West Virginia University.
28. Zheng, Y., Qu, Y., Tian, Y., Rong, C., Wang, Z., Li, S., Chen, X., & Ma, Y. (2009). Effect of Eu3+-doped on the luminescence properties of zinc borate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 349(1-3), 19–22.
29. Fadlelmoula, A., Pinho, D., Carvalho, V. H., Catarino, S. O., & Minas, G. (2022). Fourier transform infrared (FTIR) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices. Micromachines, 13(2), 187.
30. Danmallam, I. M., Ghoshal, S. K., Ariffin, R., & Bulus, I. (2020). Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd-Ofelt calculation. Optical Materials, 105, 109889.
31. Ellerbrock, R., Stein, M., & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12(1), 11708.
32. Ravi Teja, V., Sreenivasulu, M., & Chavan, V. K. (2024). Optical Applications of Europium Ion Doped Silicate Glasses: W-LED. Silicon, 16(8), 3553–3571.
33. Rajagukguk, J., Rajagukguk, D. H., Syahputra, R. A., Fibriasari, H., Sarumaha, C. S., Kirdsiri, K., Kothan, S., & Kaewkhao, J. (2024). Radioluminescence properties of huta ginjang quartz sand doped with CeF3 and Tb2O3 for scintillator application. Radiation Physics and Chemistry, 223, 111939.
34. Rai, S. (2022). Effect of Nanostructure-Materials on Optical Properties of Some Rare Earth ions (Eu3+, Sm3+, & Tb3+) Doped in Silica Matrix. Advanced Materials and Nanosystems: Theory and Experiment-Part 2, 108–119.
35. Zhao, J., Nienhuis, E. T., McCloy, J. S., & Du, J. (2020). Structures of fluoride containing aluminosilicate low activity nuclear waste glasses: A molecular dynamics simulations study. Journal of Non-Crystalline Solids, 550, 120379.
36. Fatimah, S., Ragadhita, R., Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65–76.
DOI: http://dx.doi.org/10.31258/jkfi.22.3.233-240
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by:







