Synthesis and characterization of optical properties of barium titanate (BaTiO3) with the addition of moringa, banana, matoa, and ketapang leaves extracts

Rahmi Dewi, Apriwandi Apriwandi, Yanuar Hamzah, Eza Tirta Sari, Kheny Kernila Butarbutar, Nadja Melika Putri, Nazhiwa Nathania, Surya Ardika Aritonang, Titin Hartini, Fitri Hayati, Maharani Nur Maslyah, Seli Novalin Sawitri, Siti Komariah, Septia Nursyahara, Nasywa Nuraini, Rihla Datul Aisy, Putri Safira, Rusmanianty Rusmanianty, Dinda Pratiwi, Adela Adela, Veny Sriulina Pasaribu, Vina Naomi Azhara, Ayang Febrita

Abstract


Environmentally friendly synthesis of barium titanate (BaTiO3) nanoparticles was conducted using natural leaf extracts of Moringa oleifera, Musa spp., Pometia pinnata, and Terminalia catappa as green dopants via the sol-gel method. This study aims to evaluate the influence of different leaf extracts on the optical properties of BaTiO3 characterized by UV-Vis spectroscopy. Each sample exhibited distinct absorption spectra, reflecting variations in phytochemical composition among the extracts. The results showed that Terminalia catappa and Pometia pinnata extracts produced the highest band gap values, 3.36 eV and 3.35 eV respectively, indicating optical activity in the ultraviolet region. Musa spp. extract resulted in a band gap of 2.81 eV, while Moringa oleifera extract yielded the lowest value of 2.59 eV. These differences suggest that the type of plant extract significantly affects the optical characteristics of the synthesized BaTiO3. This research highlights the potential use of local biomass in the development of functional BaTiO3-based materials through green synthesis approaches.

Keywords


Band gap; BaTiO3; green synthesis; leaf extract; UV-Vis spectroscopy

Full Text:

PDF

References


1. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28.

2. Wodecka-Duś, B., Dziwoki, T., Wójcik, A., Dziubek, K., Adamus-Włodarczyk, A., Jaskólski, D., & Lenartowicz-Klik, M. (2020). Mechanochemical Synthesis of BaTiO₃ Powders and Evaluation of Their Acrylic Dispersions. 13(15), 3275.

3. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). 'Green' synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(84).

4. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1–2), 83–96.

5. Manoj, D., & Santhosh, P. (2021). UV–Vis spectroscopic analysis of synthesized ZnO nanoparticles using banana peel extract. Materials Todasy: Proceedings, 43, 2647–2651.

6. Azuma, H., Ogawa, T., Ogata, S., Kobayashi, R., Uranagase, M., Tsuzuki, T., & Wendler, F. (2025). Unique temperature-dependence of polarization switching paths in ferroelectric BaTiO₃: A molecular dynamics simulation study. Acta Materialia, 296, 121216.

7. Carroll, E. L., Killeen, J. H., Feteira, A., Dean, J. S., & Sinclair, D. C. (2025). Influence of electrode contact arrangements on polarisation-electric field measurements of ferroelectric ceramics: A case study of BaTiO₃. Journal of Materiomics, 11, 100939.

8. Ouyang, J., Xue, Y., Yuan, M., Song, C., Wang, K., Zhao, Y., Cheng, H., Zhu, H., & Liu, C. (2025). Resolving nanograin morphology and sub-grain nanodomains via scanning probe acoustic microscopy in high energy density BaTiO₃ ferroelectric films. Journal of Materiomics, 11, 100893.

9. Moutaouaffiq, A., Belhajji, M., Didi Seddik, A., Tahiri, A., Ali, E., Hajji, L., Rjeb, A., Paramasivam, P., Ghoneim, S. S. M., & Abou Sharaf, A. B. (2025). Lanthanum-doped BaTiO₃ ceramics: Structural, dielectric, and ferroelectric properties. Results in Engineering, 25, 104466.

10. Liu, X., Wei, C., Sun, T., Zhang, F., Li, H., Liu, L., Peng, Y., Li, H., & Hong, M. (2025). A BaTiO₃-based flexible ferroelectric capacitor for non-volatile memories. Journal of Materiomics, 11, 100870.

11. Paalo, M., Yegit, S. S., Moumaneix, L., Kallio, T., & Janes, A. (2025). Synthesis of zirconium carbide via sol-gel method as a precursor for micro- and mesoporous carbide-derived carbon materials. Carbon Trends, 19, 100494.

12. Liu, Y., Li, S., Gallucci, F., & Rebrov, E. V. (2024). Sol-gel synthesis of tetragonal BaTiO₃ thin films under fast heating. Applied Surface Science, 661, 160086.

13. Arzani, F. A., Pechina, B., & dos Santos, J. H. Z. (2025). Tannin as a porogenic agent in the synthesis of silica by an acid-catalyzed sol-gel process. Results in Surfaces and Interfaces, 20, 100561.

14. Lincuna, J. R. S., Ueda, K., & Narushima, T. (2025). Citric acid-assisted sol–gel synthesis of highly reactive borate-based bioactive glass powders. Journal of Non-Crystalline Solids, 666, 123637.

15. Guo, Y., Han, Z., Zhang, J., Lu, Y., Li, C., & Liu, G. (2024). Development of a high-speed and ultrasensitive UV/Vis-CM for detecting total triterpenes in traditional Chinese medicine and its application. Heliyon, 10, 32239.

16. Berasarte, I., Bordagaray, A., Garcia-Arrona, R., Ostra, M., & Vidal, M. (2025). Silver nanoparticles for the colorimetric determination of electrolytes by UV–vis spectrophotometry and digital image analysis. Sensing and Bio-Sensing Research, 49, 100831.




DOI: http://dx.doi.org/10.31258/jkfi.22.2.169-174

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image