Relation of reflectance intensity and chemical contents of oil palm fresh fruit bunches using multispectral imaging
Abstract
Keywords
Full Text:
PDFReferences
1. ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., & Rousseau, D. (2019). Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An overview. Sensors, 19(5).
2. Chang, A., Yeom, J., Jung, J., & Landivar, J. (2020). Comparison of canopy shape and vegetation indices of citrus trees derived from UAV multispectral images for characterization of citrus greening disease. Remote Sensing, 12(24), 4122.
3. Jurado, J. M., Ortega, L., Cubillas, J. J., & Feito, F. R. (2020). Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees. Remote Sensing, 12(7).
4. Shiddiq, M., Herman, H., Arief, D. S., Fitra, E., Husein, I. R., & Ningsih, S. A. (2022). Wavelength selection of multispectral imaging for oil palm fresh fruit ripeness classification. Appl. Opt., 61.
5. Ibrahim, A., Alghannam, A., Eissa, A., Firtha, F., Kaszab, T., Kovacs, Z., & Helyes, L. (2021). Preliminary study for inspecting moisture content, dry matter content, and firmness parameters of two date cultivars using an NIR hyperspectral imaging system. Frontiers in Bioengineering and Biotechnology, 9.
6. Zhang, L., Wang, Y., Wei, Y., & An, D. (2022). Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel. Food Chemistry, 370.
7. Monsalve, M. A. T., Osorio, G., Montes, N. L., Lopez, S., Cubero, S., & Blasco, J. (2020). Characterization of a multispectral imaging system based on narrow bandwidth power LEDs. IEEE Trans. Instrum. Meas., 70, 1–11.
8. Crowther, J. (2022). Monochrome camera conversion: Effect on sensitivity for multispectral imaging (Ultraviolet, Visible, and Infrared). Journal of Imaging, 8(3), 54.
9. Jia, B., Wang, W., Ni, X., Lawrence, K. C., Zhuang, H., Yoon, S. C., & Gao, Z. (2020). Essential processing methods of hyperspectral images of agricultural and food products. Chemometrics and Intelligent Laboratory Systems, 198.
10. Lai, J. W., Ramli, H. R., Ismail, L. I., & Wan Hasan, W. Z. (2023). Oil palm fresh fruit bunch ripeness detection methods: A systematic review. Agriculture, 13(1), 156.
11. Tantanawat, T., Srimongkol, S., Yuttawiriya, R., Haewchin, A., Sangkapes, T., & Hattha, E. (2020). Development of a method for measuring oil content in oil palm mesocarp using a single-outlet piston press: a feasibility study. Journal of Food Measurement and Characterization, 14(1).
12. Mansour, M. Y. M. A., Dambul, K. D., & Choo, K. Y. (2022). Object detection algorithms for ripeness classification of oil palm fresh fruit bunch. International Journal of Technology, 13(6), 1326–1335.
13. Rabin, M. F., Shiddiq, M., Setiadi, R. N., Harmailil, I. O., Ramdani, R., & Permana, D. (2024). Classification of maturity levels of oil palm fresh fruit bunches using LED-based multispectral imaging methods and principal component analysis. Indonesian Physics Communication, 21(1), 91–98.
14. Husein, I. R., Ningsih, S. A., & Alfahrezi, G. (2023). Oil Content and Free Fatty Acid Prediction of Oil Palm Fresh Fruit Bunches Using Multispectral Imaging and Partial Least Square Algorithm. Proceedings of the 4th International Seminar on Science and Technology (ISST 2022), 7, 143.
15. Sinambela, R., Mandang, T., Subrata, I., & Hermawan, W. (2020). A ripeness study of oil palm fresh fruit at the bunch different positions. Jurnal Keteknikan Pertanian, 8.
16. Ningsih, S. A., Shiddiq, M., Arief, D. S., & Husein, I. R. (2020). Pengunaan pencitraan multispektral pada panjang gelombang 520 nm dan 800 nm untuk mengevaluasi tingkat kematangan TBS kelapa sawit. Komunikasi Fisika Indonesia, 17(3), 144.
17. Setiawan, A. W., Mengko, R., Putri, A. P. H., Danudirdjo, D., & Ananda, A. R. (2019). Classification of palm oil fresh fruit bunch using multiband optical sensors. International Journal of Electrical and Computer Engineering, 9(4), 2386.
18. Azmi, M. H. I. M., Hashim, F. H., Huddin, A. B., & Sajab, M. S. (2022). Correlation study between the organic compounds and ripening stages of oil palm fruitlets based on the Raman spectra. Sensors, 22(18).
19. Ali, M. M., Hashim, N., & Hamid, A. S. A. (2020). Combination of laser-light backscattering imaging and computer vision for rapid determination of oil palm fresh fruit bunches maturity. Computers and Electronics in Agriculture, 169.
DOI: http://dx.doi.org/10.31258/jkfi.22.2.149-156
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: