Comparison of electrochemical performance of supercapacitor electrodes based on electrolyte solution variation
Abstract
Keywords
Full Text:
PDFReferences
1. Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176–183.
2. Bhattarai, H. (2022). Renewable energy and energy storage systems. Energy Conversion: Methods, Technology and Future Directions, 269–289.
3. Li, C., Feng, Y., & Niu, W. (2022). Optimization of microwave-assisted hydrothermal carbonization and potassium bicarbonate. Journal of Energy Storage.
4. Rahman, M. M., Oni, A. O., & Kumar, A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223.
5. Deshpande, A., Rawat, S., & Hotha, S. (2023). Converting renewable saccharides to heteroatom doped porous carbons as supercapacitor electrodes. Carbon, 214.
6. Gür, E., Semerci, T. G., & Semerci, F. (2022). Sugar beet pulp derived oxygen-rich porous carbons for supercapacitor applications. Journal of Energy Storage.
7. Asti, R. D. & Putra, A. (2024). Pengaruh Jenis Larutan Elektrolit Terhadap Sifat Elektrokimia Superkapasitor. Program Studi Kimia, Universitas Negeri Padang, 8.
8. Taer, E., Putri, A., & Yusra, D. A. (2021). The effect of potassium iodide (KI) addition to aqueous-based electrolyte. Materials Today: Proceedings, 44.
9. Chen, Z., Wang, X., & Wang, Z. (2020). Rice husk-based hierarchical porous carbon for high performance supercapacitors. Carbon, 161.
10. Zou, X., Dong, C., & Yang, H. (2023). Engineering of N, P co-doped hierarchical porous carbon from sugarcane bagasse. Colloids and Surfaces A, 672, 131715.
11. Priya, D. S., Kennedy, L. J., & Anand, G. T. (2023). Effective conversion of waste banana bract into porous carbon electrod. Results in Surfaces and Interfaces, 10.
12. Taer, E. & Taslim, R. (2021). Matoa Fruit peel-based Activated Carbon and its Application as an Electrode. Journal of Physics: Conference Series, 2049(1).
13. Zhang, X., Han, R., & Liu, B. (2023). Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: A review. Chemical Engineering Journal, 460.
14. Hartati, S. D., Taer, E., & Taslim, R. (2016). Pengaruh variasi suhu aktivasi fisika terhadap sifat fisis dan elektrokimia elektroda karbon superkapasitor dari limbah kulit pisang. Spektra, 1(2), 165.
15. Licht, F., Davis, M. A., & Andreas, H. A. (2020). Charge redistribution and electrode history impact galvanostatic charging/discharging and associated figures of merit. Journal of Power Sources.
16. Hu, Z., Xu, L., & Jiang, H. (2018). Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis. Applied Energy, 212, 1321.
17. Wang, M. X., He, D., & Yang, H. (2023). Green fabrication of hierarchically porous carbon microtubes from biomass waste via self-activation for high-energy-density supercapacitor. Journal of Power Sources.
18. Mardiah, M. A., Awitdrus, R. F., & Taer, E. (2021). Characterization of physical properties for activated carbon from garlic skin.acitors. J. Aceh Phys. Soc., 10(4), 102.
19. Desmagrini, D., Awitdrus, A., & Farma, R. (2021). Synthesis of activated carbon electrodes from date seeds with a variety of separators for supercapacitor cell. Journal of Aceh Physics Society, 10(3).
20. Taer, E., Zulkifli, Z., Sugianto, S., Syech, R., & Taslim, R. (2015). Analisa Siklis Voltametri Superkapasitor Menggunakan Elektroda Karbon Aktif Dari Kayu Karet. Prosiding Seminar Nasional Fisika, 4.
21. Apriwandi, A., Taer, E., & Farma, R. (2021). Analysis of Cyclic Voltammetry dan Galvanostatic Charge Discharge Electrode Supercapacitor. Journal of Aceh Physics Society, 10(4), 94–101.
22. Brousse, T., Bélanger, D., & Sugimoto, W. (2017). Materials for electrochemical capacitors. Springer Handbook of Electrochemical Energy, 495–561.
23. Huda, A. N., Lestari, I., & Hidayat, S. (2022). Pemanfaatan Karbon Aktif dari Sekam Padi Sebagai Elektroda Superkapasitor. Jurnal Ilmu dan Inovasi Fisika, 6(2), 102–113.
DOI: http://dx.doi.org/10.31258/jkfi.22.2.133-140
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: