Comparison of electrochemical performance of supercapacitor electrodes based on electrolyte solution variation

Rosianna Purba, Awitdrus Awitdrus

Abstract


The increasing global energy demand has accelerated the progress of renewable energy technologies and the creation of effective energy storage solutions such as supercapacitors. In this study, biomass obtained from the peel of the matoa fruit (Pometia pinnata) was employed as a raw material to produce activated carbon for supercapacitor electrodes. The preparation process consisted of an initial carbonization step, followed by chemical activation using a 0.7 M potassium hydroxide (KOH) solution, and then additional carbonization and physical activation stages. The synthesized material was characterized through density measurements and electrochemical testing, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods, conducted with KOH electrolytes at concentrations of 2, 4, and 6 M. Results demonstrated that combining chemical activation with pyrolysis yielded better outcomes than physical activation alone, as shown by a decrease in activated carbon density, indicating enhanced porosity and surface area. CV analysis revealed that increasing the KOH electrolyte concentration improved the supercapacitor’s performance, reflected in higher specific capacitance during charge-discharge cycles. Moreover, GCD experiments showed that electrodes treated with 6 M KOH electrolyte achieved the greatest specific capacitance, energy density, and power density, recorded at 170.52 F/g, 23.68 Wh/kg, and 580.00 W/kg, respectively. These findings highlight that activated carbon derived from matoa fruit peel is a highly promising material for supercapacitor electrodes, combining excellent electrochemical characteristics, efficiency, and stable cycling behavior.

Keywords


Activated carbon; electrolyte; matoa fruit peel; supercapacitor

Full Text:

PDF

References


1. Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176–183.

2. Bhattarai, H. (2022). Renewable energy and energy storage systems. Energy Conversion: Methods, Technology and Future Directions, 269–289.

3. Li, C., Feng, Y., & Niu, W. (2022). Optimization of microwave-assisted hydrothermal carbonization and potassium bicarbonate. Journal of Energy Storage.

4. Rahman, M. M., Oni, A. O., & Kumar, A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223.

5. Deshpande, A., Rawat, S., & Hotha, S. (2023). Converting renewable saccharides to heteroatom doped porous carbons as supercapacitor electrodes. Carbon, 214.

6. Gür, E., Semerci, T. G., & Semerci, F. (2022). Sugar beet pulp derived oxygen-rich porous carbons for supercapacitor applications. Journal of Energy Storage.

7. Asti, R. D. & Putra, A. (2024). Pengaruh Jenis Larutan Elektrolit Terhadap Sifat Elektrokimia Superkapasitor. Program Studi Kimia, Universitas Negeri Padang, 8.

8. Taer, E., Putri, A., & Yusra, D. A. (2021). The effect of potassium iodide (KI) addition to aqueous-based electrolyte. Materials Today: Proceedings, 44.

9. Chen, Z., Wang, X., & Wang, Z. (2020). Rice husk-based hierarchical porous carbon for high performance supercapacitors. Carbon, 161.

10. Zou, X., Dong, C., & Yang, H. (2023). Engineering of N, P co-doped hierarchical porous carbon from sugarcane bagasse. Colloids and Surfaces A, 672, 131715.

11. Priya, D. S., Kennedy, L. J., & Anand, G. T. (2023). Effective conversion of waste banana bract into porous carbon electrod. Results in Surfaces and Interfaces, 10.

12. Taer, E. & Taslim, R. (2021). Matoa Fruit peel-based Activated Carbon and its Application as an Electrode. Journal of Physics: Conference Series, 2049(1).

13. Zhang, X., Han, R., & Liu, B. (2023). Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: A review. Chemical Engineering Journal, 460.

14. Hartati, S. D., Taer, E., & Taslim, R. (2016). Pengaruh variasi suhu aktivasi fisika terhadap sifat fisis dan elektrokimia elektroda karbon superkapasitor dari limbah kulit pisang. Spektra, 1(2), 165.

15. Licht, F., Davis, M. A., & Andreas, H. A. (2020). Charge redistribution and electrode history impact galvanostatic charging/discharging and associated figures of merit. Journal of Power Sources.

16. Hu, Z., Xu, L., & Jiang, H. (2018). Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis. Applied Energy, 212, 1321.

17. Wang, M. X., He, D., & Yang, H. (2023). Green fabrication of hierarchically porous carbon microtubes from biomass waste via self-activation for high-energy-density supercapacitor. Journal of Power Sources.

18. Mardiah, M. A., Awitdrus, R. F., & Taer, E. (2021). Characterization of physical properties for activated carbon from garlic skin.acitors. J. Aceh Phys. Soc., 10(4), 102.

19. Desmagrini, D., Awitdrus, A., & Farma, R. (2021). Synthesis of activated carbon electrodes from date seeds with a variety of separators for supercapacitor cell. Journal of Aceh Physics Society, 10(3).

20. Taer, E., Zulkifli, Z., Sugianto, S., Syech, R., & Taslim, R. (2015). Analisa Siklis Voltametri Superkapasitor Menggunakan Elektroda Karbon Aktif Dari Kayu Karet. Prosiding Seminar Nasional Fisika, 4.

21. Apriwandi, A., Taer, E., & Farma, R. (2021). Analysis of Cyclic Voltammetry dan Galvanostatic Charge Discharge Electrode Supercapacitor. Journal of Aceh Physics Society, 10(4), 94–101.

22. Brousse, T., Bélanger, D., & Sugimoto, W. (2017). Materials for electrochemical capacitors. Springer Handbook of Electrochemical Energy, 495–561.

23. Huda, A. N., Lestari, I., & Hidayat, S. (2022). Pemanfaatan Karbon Aktif dari Sekam Padi Sebagai Elektroda Superkapasitor. Jurnal Ilmu dan Inovasi Fisika, 6(2), 102–113.




DOI: http://dx.doi.org/10.31258/jkfi.22.2.133-140

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image