A cosmological inflation model with inverse minimal and non-minimal coupling between scalar fields and curvature tensors

Getbogi Hikmawan, Freddy Permana Zen

Abstract


This work reviews the cosmological inflation model involving inverted minimal and non-minimal interactions between the scalar field ϕ and its derivatives with the space curvature tensor. The de Sitter exponential expansion and the decaying scalar field conditions are also reviewed to move the model towards the inflationary condition, where as a generator of inflation, the scalar field must decay at the end of time. The scalar and tensor perturbation equations, their respective spectral indices, and the tensor-to-scalar ratio have been calculated to study the nonlinearity of the reviewed model. It is shown that the spectral indices and tensor-to-scalar ratio of the model are in good agreement with the observational data.

Keywords


Cosmological perturbations; inflation; scalar field

Full Text:

PDF

References


1. Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347.

2. Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1), 99–102.

3. Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., De Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R., & Wilkinson, D. T. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, 396(1), L1–L5.

4. Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C., Dunkley, J., Nolta, M. R., Halpern, M., Hill, R. S., Odegard, N., Page, L., Smith, K. M., Weiland, J. L., Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., & Wright, E. L. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. The Astrophysical Journal Supplement Series, 208(2), 19.

5. Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., & Savelainen, M. (2020). Planck 2018 results-X. Constraints on inflation. Astronomy & Astrophysics, 641, A10.

6. Gleyzes, J., Langlois, D., Piazza, F., & Vernizzi, F. (2013). Essential building blocks of dark energy. Journal of Cosmology and Astroparticle Physics, 2013(08), 025.

7. Horndeski, G. W. (1974). Second-order scalar-tensor field equations in a four-dimensional space. International Journal of Theoretical Physics, 10(6), 363–384.

8. Ostrogradsky, M. (1850). Memoires sur les equations differentielles, relatives au probleme des isoperimetres. Mem. Acad. St. Petersbourg 6(4), 385–517.

9. Armendariz-Picon, C., Damour, T., & Mukhanov, V. (1999). k-Inflation. Physics Letters B, 458(2-3), 209–218.

10. Brans, C. & Dicke, R. H. (1961). Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 124.

11. Gasperini, M. & Veneziano, G. (2003). The pre-big bang scenario in string cosmology. Physics Reports, 373(1-2), 1–212.

12. Sotiriou, T. P. & Faraoni, V. (2010). f (R) theories of gravity. Reviews of Modern Physics, 82(1), 451–497.

13. Amendola, L. (1993). Cosmology with nonminimal derivative couplings. Physics Letters B, 301(2-3), 175–182.

14. Suroso, A. & Zen, F. P. (2013). Cosmological model with nonminimal derivative coupling of scalar fields in five dimensions. General Relativity and Gravitation, 45(4), 799–809.

15. Kanti, P., Gannouji, R., & Dadhich, N. (2015). Gauss-bonnet inflation. Physical Review D, 92(4), 041302.

16. Hikmawan, G., Soda, J., Suroso, A., & Zen, F. P. (2016). Comment on “Gauss-Bonnet inflation”. Physical Review D, 93(6), 068301.

17. Arnowitt, R., Deser, S., & Misner, C. W. (1960). Canonical variables for general relativity. Physical Review, 117(6), 1595.

18. Dodelson, S. (2003). Modern Cosmology. Oxford: Elsevier, 147.

19. Maldacena, J. (2003). Non-Gaussian features of primordial fluctuations in single field inflationary models. Journal of High Energy Physics, 2003(05), 013.

20. Tsujikawa, S. (2015). The effective field theory of inflation/dark energy and the Horndeski theory. Lect. Notes Phys., 892, 97–136.

21. Hikmawan, G., Suroso, A., & Zen, F. P. (2019). Cosmological inflation with minimal and non-minimal coupling of scalar field from Horndeski theory. Journal of Physics: Conference Series, 1204(1), 012007.




DOI: http://dx.doi.org/10.31258/jkfi.22.2.111-118

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image