A cosmological inflation model with inverse minimal and non-minimal coupling between scalar fields and curvature tensors
Abstract
Keywords
Full Text:
PDFReferences
1. Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347.
2. Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1), 99–102.
3. Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., De Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R., & Wilkinson, D. T. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, 396(1), L1–L5.
4. Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C., Dunkley, J., Nolta, M. R., Halpern, M., Hill, R. S., Odegard, N., Page, L., Smith, K. M., Weiland, J. L., Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., & Wright, E. L. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. The Astrophysical Journal Supplement Series, 208(2), 19.
5. Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., & Savelainen, M. (2020). Planck 2018 results-X. Constraints on inflation. Astronomy & Astrophysics, 641, A10.
6. Gleyzes, J., Langlois, D., Piazza, F., & Vernizzi, F. (2013). Essential building blocks of dark energy. Journal of Cosmology and Astroparticle Physics, 2013(08), 025.
7. Horndeski, G. W. (1974). Second-order scalar-tensor field equations in a four-dimensional space. International Journal of Theoretical Physics, 10(6), 363–384.
8. Ostrogradsky, M. (1850). Memoires sur les equations differentielles, relatives au probleme des isoperimetres. Mem. Acad. St. Petersbourg 6(4), 385–517.
9. Armendariz-Picon, C., Damour, T., & Mukhanov, V. (1999). k-Inflation. Physics Letters B, 458(2-3), 209–218.
10. Brans, C. & Dicke, R. H. (1961). Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 124.
11. Gasperini, M. & Veneziano, G. (2003). The pre-big bang scenario in string cosmology. Physics Reports, 373(1-2), 1–212.
12. Sotiriou, T. P. & Faraoni, V. (2010). f (R) theories of gravity. Reviews of Modern Physics, 82(1), 451–497.
13. Amendola, L. (1993). Cosmology with nonminimal derivative couplings. Physics Letters B, 301(2-3), 175–182.
14. Suroso, A. & Zen, F. P. (2013). Cosmological model with nonminimal derivative coupling of scalar fields in five dimensions. General Relativity and Gravitation, 45(4), 799–809.
15. Kanti, P., Gannouji, R., & Dadhich, N. (2015). Gauss-bonnet inflation. Physical Review D, 92(4), 041302.
16. Hikmawan, G., Soda, J., Suroso, A., & Zen, F. P. (2016). Comment on “Gauss-Bonnet inflation”. Physical Review D, 93(6), 068301.
17. Arnowitt, R., Deser, S., & Misner, C. W. (1960). Canonical variables for general relativity. Physical Review, 117(6), 1595.
18. Dodelson, S. (2003). Modern Cosmology. Oxford: Elsevier, 147.
19. Maldacena, J. (2003). Non-Gaussian features of primordial fluctuations in single field inflationary models. Journal of High Energy Physics, 2003(05), 013.
20. Tsujikawa, S. (2015). The effective field theory of inflation/dark energy and the Horndeski theory. Lect. Notes Phys., 892, 97–136.
21. Hikmawan, G., Suroso, A., & Zen, F. P. (2019). Cosmological inflation with minimal and non-minimal coupling of scalar field from Horndeski theory. Journal of Physics: Conference Series, 1204(1), 012007.
DOI: http://dx.doi.org/10.31258/jkfi.22.2.111-118
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: