Volumetric-gravimetric synergy in biomass-derived carbon supercapacitors: A case study on dried banana leaf waste

Apriwandi Apriwandi

Abstract


Biomass-derived carbon-based supercapacitors are a compelling solution for environmentally friendly electrochemical energy storage, playing a crucial role in the transition to sustainable energy. Despite this potential, much of the existing research has overly concentrated on theoretical evaluations, hindering practical application. This study decisively addresses the performance of supercapacitors on both a volumetric and practical scale, underscoring their global applicability. The carbon material utilized in this research was expertly produced from dried banana leaf biomass, converted into solid carbon through a process of chemical activation with NaOH and high-temperature pyrolysis. The pyrolysis was carried out in an integrated fashion, combining carbonization and physical activation stages within a carbon dioxide (CO₂) gas atmosphere at temperatures of 700°C, 800°C, and 900°C. Initial characterization focused on density analysis to assess the structural integrity of the porous carbon electrodes. Electrochemical performance was rigorously evaluated using cyclic voltammetry (CV) for volumetric capacitance and galvanostatic charge-discharge (GCD) for gravimetric capacitance within a two-electrode system using a 1000 mmol/L Na2SO4 electrolyte. The results are compelling: the carbon material activated at 900°C achieved an exceptional volumetric capacitance of 198 F/cm³ and a gravimetric capacitance of 181 F/g. These results clearly demonstrate that banana leaf-derived activated carbon is not only viable but also a highly promising electrode material for supercapacitors, paving the way for practical applications in the field.

Keywords


Biomassa; carbon; gravimetric performance; supercapacitor; volumetric performance

Full Text:

PDF

References


1. Tadesse, M. G., Ahmmed, A. S., & Lübben, J. F. (2024). Review on conductive polymer composites for supercapacitor applications. Journal of Composites Science, 8(2), 53.

2. Khan, H. A., Tawalbeh, M., Aljawrneh, B., Abuwatfa, W., Al-Othman, A., Sadeghifar, H., & Olabi, A. G. (2024). A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges. Energy, 131043.

3. Yuan, C., Xu, H., El-khodary, S. A., Ni, G., Esakkimuthu, S., Zhong, S., & Wang, S. (2024). Recent advances and challenges in biomass-derived carbon materials for supercapacitors: A review. Fuel, 362, 130795.

4. Hu, H., Yan, M., Jiang, J., Huang, A., Cai, S., Lan, L., Ye, K., Chen, D., Tang, K., Zuo, Q., Zeng, Y., Tang, W., Fu, J., Jiang, C., Wang, Y., Yan, Z., He, X., Qiao, L., & Zhao, Y. (2024). A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization. Science of The Total Environment, 912, 169141.

5. Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10–29.

6. Saini, S., Chand, P., & Joshi, A. (2021). Biomass derived carbon for supercapacitor applications. Journal of Energy Storage, 39, 102646.

7. Liu, D., Zhang, W., & Huang, W. (2019). Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chinese Chemical Letters, 30(6), 1315–1319.

8. Liu, B., Wang, X., Chen, Y., Xie, H., Zhao, X., Nassr, A. B., & Li, Y. (2023). Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes. Journal of Energy Storage, 68, 107826.

9. Shao, Y., Liu, Y., Guan, Q., & Ding, C. (2022). Nitrogen doped layered porous carbon derived from peanut shell for high volumetric performance supercapacitors. Materials Letters, 323, 132580.

10. Wang, Q., Yan, J., & Fan, Z. (2016). Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 9(3), 729–762.

11. Kim, J., Wi, S. M., Son, S., Lim, H., Park, Y., Jang, A. R., Park, J. B., Cho, Y., Song, Y. C., Pak, S., & Lee, Y. W. (2024). Rationally engineered interdigitated electrodes with heteroatom doped porous graphene and improved surface wettability for flexible micro-supercapacitors. Journal of Energy Storage, 86, 111271.

12. Taer, E., Apriwandi, A., Andriani, D., Fudholi, A., Citraningrum, N., Deraman, M., & Taslim, R. (2024). Self-doped N, P, O heteroatoms carbon nano-hollow-fiber derived aromatic bio-organic for advanced gravi-volumetric supercapacitors. Journal of Physics D: Applied Physics, 57(46), 465501.

13. Yu, T., Zhou, Q., Chen, J., Ma, W., Wang, C., Fan, S., & Zhang, Y. (2024). The synthesis of nanocellulose/B, N, F tri-doped graphene composite hydrogels for supercapacitor applications. Vacuum, 222, 113036.

14. Long, C., Chen, X., Jiang, L., Zhi, L., & Fan, Z. (2015). Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 12, 141–151.

15. Zhang, Y., Yu, Y., Xiao, R., Du, C., Wan, L., Ye, H., Chen, J., Wang, T., & Xie, M. (2022). Faradaic-active N-doped reduced graphene as electrode for supercapacitor with high-volumetric performances. Journal of Energy Storage, 54, 105299.

16. Yakaboylu, G. A., Jiang, C., Yumak, T., Zondlo, J. W., Wang, J., & Sabolsky, E. M. (2021). Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy, 163, 276–287.

17. Lu, Z., Foroughi, J., Wang, C., Long, H., & Wallace, G. G. (2018). Superelastic hybrid CNT/graphene fibers for wearable energy storage. Advanced Energy Materials, 8(8), 1702047.

18. Gopalakrishnan, A. & Badhulika, S. (2020). Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of power sources, 480, 228830.

19. Li, Q., Jiang, Y., Jiang, Z., Zhu, J., Gan, X., Qin, F., Tang, T., Luo, W., Guo, N., Liu, Z., Wang, L., Zhang, S., Jia, D., & Fan, Z. (2022). Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon, 191, 19–27.

20. Taer, E., Pratiwi, L., Apriwandi, A., Mustika, W. S., Taslim, R., & Agustino, A. (2020). Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application. Communications in Science and Technology, 5(1), 22–30.

21. Gabookolwe, M. K., Onisuru, O. R., Odisitse, S., Meijboom, R., Muiva, C., & King'ondu, C. K. (2024). Biomass Nanoarchitectonics of abattoir waste to high coulombic efficient mesoporous carbon materials for supercapacitors. Journal of Energy Storage, 104, 114541.

22. Yardım, Y., Genel, İ., & Saka, C. (2025). Enhanced supercapacitor performance of hierarchical mesoporous sulfur-doped carbon particles from biomass waste for energy storage. International Journal of Hydrogen Energy, 99, 383–393.

23. Julnaidi, Amri, A., Saputra, E., Nofrizal, & Taer, E. (2023). High well‐matched energy gravimetric–volumetric symmetric super‐capacitor derived from hollow paper stack‐like biomass‐based functional carbon. Journal of Chemical Technology & Biotechnology, 98(9), 2330–2342.

24. Miller, E. E., Hua, Y., & Tezel, F. H. (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. Journal of Energy Storage, 20, 30–40.

25. Ayinla, R. T., Dennis, J. O., Zaid, H. M., Sanusi, Y. K., Usman, F., & Adebayo, L. L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of cleaner production, 229, 1427–1442.

26. Taer, E., Apriwandi, A., Ningsih, Y. S., & Taslim, R. (2019). Preparation of activated carbon electrode from pineapple crown waste for supercapacitor application. International Journal of Electrochemical Science, 14(3), 2462–2475.

27. Taer, E., Dewi, P., Sugianto, S., Syech, R., Taslim, R., Salomo, S., Susanti, Y., Purnama, A., Apriwandi, A., Agustino, A., & Setiadi, R. N. (2018). The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP conference proceedings, 1927(1), 030026.

28. Fan, Y., Cai, Y., Li, X., Jiao, L., Xia, J., & Deng, X. (2017). Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Conversion and Management, 138, 106.

29. González, J. F., Román, S., Encinar, J. M., & Martínez, G. (2009). Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis, 85(1-2), 134–141.

30. Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., & Huang, C. (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 155, 706–726.

31. Taer, E., Apriwandi, A., Taslim, R., Agutino, A., & Yusra, D. A. (2020). Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology, 9(6), 13332–13340.

32. Taer, E., Taslim, R., Putri, A. W., Apriwandi, A., & Agustino, A. (2018). Activated carbon electrode made from coconut husk waste for supercapacitor application. International Journal of Electrochemical Science, 13(12), 12072–12084.

33. Xu, H., Dong, L., Zhang, B., Wang, K., Meng, J., Tong, Y., & Wang, H. (2024). Heteroatom self-doped graphitic carbon materials from Sargassum thunbergii with improved supercapacitance performance. Advanced Sensor and Energy Materials, 3(2), 100102.

34. Yumak, T., Yakaboylu, G. A., Oginni, O., Singh, K., Ciftyurek, E., & Sabolsky, E. M. (2020). Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124150.

35. Liu, F., Wang, Z., Zhang, H., Jin, L., Chu, X., Gu, B., Huang, H., & Yang, W. (2019). Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon, 149, 105–116.

36. Wei, H., Wang, H., Li, A., Li, H., Cui, D., Dong, M., Lin, J., Fan, J., Zhang, J., Hou, H., Shi, Y., Zhou, D., & Guo, Z. (2020). Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. Journal of Alloys and Compounds, 820, 153111.

37. Riyanto, C. A., Ampri, M. S., & Martono, Y. (2020). Synthesis and characterization of nano activated carbon from Annatto Peels (Bixa orellana L.) viewed from temperature activation and impregnation ratio of H3PO4. EKSAKTA: Journal of Sciences and Data Analysis, 44–50.

38. Taer, E., Tampubolon, D. K. H., Farma, R., Setiadi, R. N., & Taslim, R. (2021). Longan Leaves biomass-derived renewable activated carbon materials for electrochemical energy storage. Journal of Physics: Conference Series, 2049(1), 012009.

39. Taer, E. & Taslim, R. (2021). High Potential of Averrhoa bilimbi Leaf Waste as Porous Activated Carbon Source for Sustainable Electrode Material Supercapacitor. Journal of Physics: Conference Series, 2049(1), 012051.

40. Stoller, M. D. & Ruoff, R. S. (2010). Best practice methods for determining an electrode material's performance for ultracapacitors. Energy and Environmental Science, 3(9), 1294–1301.




DOI: http://dx.doi.org/10.31258/jkfi.22.1.1-10

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image