Prediction of Pekanbaru City rainfall using dynamic models

Esy Yunita, Sri Fitria Retnawaty, Neneng Fitrya

Abstract


The need for predictions is very necessary in various sectors of life, one of which is rainfall predictions. The threshold value for PM10 particles that is allowed to be in ambient air is, 150 µgram/m3/day). The aim of this research is to create a dynamic model predicting Pekanbaru City's rainfall for the next 3 years. Rainfall prediction in this research was carried out using the dynamic system modeling method with Powersim software. The data used is BMKG data for the Pekanbaru City for 5 years (2015 – 2019) using 4 parameters, namely rainfall, air humidity, wind speed and temperature. Prediction results show that air humidity in Pekanbaru City has the same pattern as BMKG, namely the highest month is December and the lowest is August. Wind speed prediction results are highest in July and lowest in May. The highest temperature in Pekanbaru City is in April and the lowest is in January. Rainfall for 2020 – 2021 is predicted to experience light rain on average, because it has the same data pattern on the variables that influence it. So it can be interpreted that the validation results for air humidity, wind speed and temperature in Pekanbaru City show that they are valid because they do not exceed the limit value of ≤ 5%.

Keywords


Dynamic model; Pekanbaru City; prediction; rainfall

Full Text:

PDF

References


1. PERMENLH. (2021). Nilai ambang batas partikulat. Peraturan Menteri Negara Lingkungan Hidup No. 12.

2. BMKG. (2019). Informasi jumlah nilai PM10 Kota Pekanbaru. Badan Meteorologi, Klimatologi dan Geofisika.

3. Anggriyani, S., Manuputty, M., Lewaherilla, A., & Bakarbessy, L. (2024). Prediksi curah hujan di Kota Tual dengan menggunakan metode backpropagation. PARAMETER: Jurnal Matematika, Statistika dan Terapannya, 3(1), 1–11.

4. Istianto, A. F., Hadiana, A. I., & Umbara, F. R. (2023). Prediksi curah hujan menggunakan metode categorical boosting (Catboost). JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2930–2937.

5. El-Sawah, S., Haase, D., Van Delden, H., Pierce, S., ElMahdi, A., Voinov, A., & Jakeman, A. J. (2012). Using system dynamics for environmental modelling: Lessons learnt from six case studies. 6th International Congress on Environmental Modelling and Software 2012: Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, 1367–1374.

6. Safril, A. & Ulfiana, A. (2019). Prediksi curah hujan bulanan menggunakan metode statistical downscaling di pulau jawa dengan pemilihan prediktor berdasarkan transpor uap air. Jurnal Geografi, 11(2), 19–33.

7. Setiyaris, S. (2023). Prediksi curah hujan berdasarkan parameter cuaca berbasis jaringan saraf tiruan di Kabupaten Nganjuk. Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim.

8. Sarwoko, D. (2013). Pemodelan prediksi total hujan pada musim hujan menggunakan jaringan saraf tiruan dan support vector regression. Sekolah Pasca Sarjana Institut Pertanian Bogor, Bogor.

9. BMKG. (2013). Analisis Musim Kemarau 2013 Dan Prakiraan Musim Hujan 2013. Badan Meteorologi Klimatologi dan Geofisika, Kelas II, and Pondok Betung Betung.

10. Oktaviani, C. & Afdal, A. (2013). Prediksi curah hujan bulanan menggunakan jaringan syaraf tiruan dengan beberapa fungsi pelatihan backpropagation (studi kasus: stasiun meteorologi tabing padang, tahun 2001-2012). Jurnal Fisika Unand, 2(4).

11. Handayani, L. & Adri, M. (2015). Pwenerapan JST (backpropagation) untuk prediksi curah hujan (Studi kasus: Kota Pekanbaru). Seminar Nasional Teknologi Informasi Komunikasi dan Industri.

12. BMKG. (2019). Informasi jumlah nilai PM10 Kota Pekanbaru. Badan Meteorologi, Klimatologi dan Geofisika.

13. BMKG. (2019). Kualitas udara Kota Pekanbaru. Badan Meteorologi, Klimatologi dan Geofisika.

14. BMKG. (2019). Informasi sebaran titik panas sekitar kota Pekanbaru. Badan Meteorologi, Klimatologi dan Geofisika.

15. Ni’maturrakhmat. (2019). Penjadwalan produksi venner di PT. XYZ dengan pendekatan sistem dinamis. Skripsi Fakultas Teknologi Pertanian. Universitas Jember.

16. Muljono, A. B., Mukti, K. B. K., & Natsir, A. (2022). Kajian teknis dan ekonomi pembangkit listrik tenaga sampah (PLTSa) menggunakan perangkat lunak LandGEM TPA Kebon Kongok Gerung Lombok Barat. DIELEKTRIKA, 9(1), 68–79.

17. Robby, T. N., Ramdhani, M., & Ekaputri, C. (2017). Alat ukur kecepatan angin, arah angin, dan ketinggian. eProceedings of Engineering, 4(2).

18. Kustiyo, A., Sucahyono, D., & Mujahidin, A. (2015). Penerapan jaringan saraf tiruan untuk pemodelan prakiraan curah hujan bulanan. IPB Scientific Repository.




DOI: http://dx.doi.org/10.31258/jkfi.21.3.219-226

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image