Analysis of the effect of calcination and substitution on the phase properties of strontium-hydroxyapatite

Elvina Putri, Iwantono Iwantono, Zulkarnain Zulkarnain, Jan Setiawan

Abstract


Hydroxyapatite (HAp) is a ceramic biomaterial that is highly biocompatible and employed in a variety of biomedical applications. Its chemical formula is Ca10(PO4)6(OH)2, comprising calcium and phosphate, the primary minerals found in bones and teeth. The precipitation method can be used to change the structure of hydroxyapatite by replacing strontium ions (Sr2+) with calcium ions (Ca2+). This work aims to determine the physical parameters of Sr-HAp samples with substitutions of 0, 0.25, 0.3, 0.5, and 0.75 %-mol. The samples were dried at 105ºC for four hours and then calcined at 750ºC for two hours. Sr-HAp samples were examined using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and SEM-EDX. The XRD data revealed diffraction patterns with distinctive peak intensities, lattice characteristics, and crystal structures. The XRD data revealed diffraction patterns with distinct peak intensities, lattice characteristics, and crystal structures modified by Sr replacement. The FTIR data revealed vibrations of the PO3-, Ca–O, Sr–O, and OH- functional groups, with differences in intensity and peak shifts caused by Sr substitution. SEM results revealed the shape of Sr-HAp particles in an agglomerated form, while EDX supplied elemental composition data through a comparison of O, P, Ca, and Sr atomic percentages. The study found that Sr substitution and calcination alter the structure, morphology, and bioactivity of Sr-HAp. Sr substitutions at 0% and 0.5% are remarkable in that they result in multiphases after calcination.

Keywords


Hydroxyapatite; precipitation; strontium; substitution

Full Text:

PDF

References


1. Thomson, W. M. & Barak, Y. (2021). Tooth loss and dementia: a critical examination. Journal of dental research, 100(3), 226–231.

2. Ressler, A., Antunović, M., Cvetnić, M., Ivanković, M., & Ivanković, H. (2021). Selenite substituted calcium phosphates: preparation, characterization, and cytotoxic activity. Materials, 14(12), 3436.

3. Camargo, C. L., Resende, N. S., Perez, C. A., Abreu, C. R., Salim, V. M., & Tavares, F. W. (2018). Molecular dynamics simulation and experimental validation by X-ray data of hydroxyapatite crystalline structures. Fluid Phase Equilibria, 470, 60–67.

4. Yilmaz, B., Alshemary, A. Z., & Evis, Z. (2019). Co-doped hydroxyapatites as potential materials for biomedical applications. Microchemical Journal, 144, 443–453.

5. Nurhidayat, A. R. S., Bayuseno, A. P., Ismail, R., & Taqriban, R. B. (2021). Review of the temperature and holding time effects on hydroxyapatite fabrication from the natural sources. J. Biomed. Sci. Bioeng, 1(1), 27–31.

6. Ratnayake, J. T., Mucalo, M., & Dias, G. J. (2017). Substituted hydroxyapatites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research part b: applied biomaterials, 105(5), 1285–1299.

mehta, a. & singh, g. (2023). consequences of hydroxyapatite doping using plasma spray to implant biomaterials. journal of electrochemical science and engineering, 13(1), 5–23.

8. codrea, c. i., lincu, d., atkinson, i., culita, d. c., croitoru, a. m., dolete, g., trusca, r., vasile, b. s., stan, m. s., ficai, d., & ficai, a. (2024). comparison between two different synthesis methods of strontium-doped hydroxyapatite designed for osteoporotic bone restoration. Materials, 17(7), 1472.

9. Uskoković, V. (2020). Ion-doped hydroxyapatite: An impasse or the road to follow?. Ceramics International, 46(8), 11443–11465.

10. Arcos, D. & Vallet-Regí, M. (2020). Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 8(9), 1781–1800.

11. Kuru, T. Ş. (2024). Effect of calcination temperature on structural, magnetic, and dielectric properties of Mg0. 75Zn0. 25Al0. 2Fe1. 8O4 ferrites. Journal of Materials Science: Materials in Electronics, 35(6), 415.

12. Bastan, F. E., Rehman, M. A. U., & Ustel, F. (2021). Thermo-physical insights into a series of strontium substituted hydroxyapatite. Materials Chemistry and Physics, 258, 123910.

13. Garbo, C., Locs, J., D’Este, M., Demazeau, G., Mocanu, A., Roman, C., Horovitz, O., & Tomoaia-Cotisel, M. (2020). Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. International journal of nanomedicine, 1037–1058.

14. Reem, A. W., Jafer, R., Yahia, I. S., Al-Ghamdi, A. A., Al-ghamdi, M. A., & El-Naggar, A. M. (2017). Fast and easy synthesis of novel Strontium apatite nanostructured phase: Structure, spectroscopy, and dielectric analysis. Ceramics International, 43(18), 17153–17159.

15. Da Cruz, J. A., Weinand, W. R., Neto, A. M., Palácios, R. S., Sales, A. J. M., Prezas, P. R., Costa, M. M., & Graça, M. P. F. (2020). Low-cost hydroxyapatite powders from tilapia fish. Jom, 72, 1435–1442.

16. Lee, D. S., Pai, Y., & Chang, S. (2013). Effect of thermal treatment of the hydroxyapatite powders on the micropore and microstructure of porous biphasic calcium phosphate composite granules. J. Biomater. Nanobiotechnol., 4(2), 114–118

17. Slimen, J. B., Hidouri, M., Ghouma, M., Salem, E. B., & Dorozhkin, S. V. (2021). Sintering of potassium doped hydroxy-fluorapatite bioceramics. Coatings, 11(7), 858.

18. Falsafi, S. R., Rostamabadi, H., & Jafari, S. M. (2020). X-ray diffraction (XRD) of nanoencapsulated food ingredients. Characterization of nanoencapsulated food ingredients, 271–293.

19. He, L., Dong, G., & Deng, C. (2016). Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation. Ceramics International, 42(10), 11918–11923.

20. El-Sayed, E. S. M., Omar, A., Ibrahim, M., & Abdel-Fattah, W. I. (2009). On the structural analysis and electronic properties of chitosan/hydroxyapatite interaction. Journal of Computational and Theoretical Nanoscience, 6(7), 1663–1669.

21. Yuan, Q., Wan, L., Wu, J., & Xu, A. (2020). Investigation of the effect of doped Zn atom to the hydroxyapatite based on experimental method and first-principles calculations. Journal of the Australian Ceramic Society, 56, 1413–1419.

22. Mahmood, B. K., Kaygili, O., Bulut, N., Dorozhkin, S. V., Ates, T., Koytepe, S., Gürses, C., Ercan, F., Kebiroglu, H., Agid, R. S., & İnce, T. (2020). Effects of strontium-erbium co-doping on the structural properties of hydroxyapatite: An Experimental and theoretical study. Ceramics International, 46(10), 16354–16363.

23. Rabiei, M., Palevicius, A., Monshi, A., Nasiri, S., Vilkauskas, A., & Janusas, G. (2020). Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials, 10(9), 1627.

24. Lala, S., Ghosh, M., Das, P. K., Das, D., Kar, T., & Pradhan, S. K. (2016). Magnesium substitution in carbonated hydroxyapatite: Structural and microstructural characterization by Rietveld's refinement. Materials Chemistry and Physics, 170, 319–329.

25. Shurtakova, D. V., Grishin, P. O., Gafurov, M. R., & Mamin, G. V. (2021). Using DFT to calculate the parameters of the crystal field in Mn2+ doped hydroxyapatite crystals. Crystals, 11(9), 1050.

26. Kumar, P. N., Mishra, S. K., Kiran, R. U., & Kannan, S. (2015). Preferential occupancy of strontium in the hydroxyapatite lattice in biphasic mixtures formed from non-stoichiometric calcium apatites. Dalton Transactions, 44(17), 8284–8292.

27. Kadir, L. A., Permana, D., & Azis, T. (2022). Sintesis dan Karakterisasi Bionano Hidroksiapatit (HAp) Secara Insitu Dengan Metode Hidrotermal. Cokroaminoto Journal of Chemical Science, 4(2), 1–4.

28. Lin, F. H., Chun-Jen, L., Ko-Shao, C., &

Jui-Sheng, S. (2000). Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. Materials Science and Engineering: C, 13(1-2), 97–104.

29. Silva, L. M., Menezes, D. S., Narayanan, S., Shokuhfar, T., Shahbazian-Yassar, R., Dalmônico, G. M. L., Werckmann, J., Farina, M., & dos Santos, E. A. (2020). Counterions present in syntheses induce the precipitation of two different populations of Sr-containing hydroxyapatite crystals. Ceramics international, 46(4), 4502–4510.

30. Chancey, R. T., Stutzman, P., Juenger, M. C., & Fowler, D. W. (2010). Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cement and Concrete Research, 40(1), 146–156.




DOI: http://dx.doi.org/10.31258/jkfi.21.3.245-256

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image