Areca-nut waste-derived carbon porous for sustainable electrode materials: A brief study for green-supercapacitor

Nursyafni Nursyafni, Julnaidi Julnaidi, Erman Taer

Abstract


Biomass-based porous carbon is an exceptional material with unique nano-morphological properties and a high surface area, making it an ideal candidate for improving the performance of supercapacitor electrodes. Herein, activated carbon derived novel areca-nut waste (ANW) as electrodes materials were successfully produced using a simple method. The process involved drying the ANW using pre-carbonization, chemical activation, and high-temperature pyrolysis. The zinc chloride was selected as chemical catalytic in 1 m/l solution. Subsequently, porous carbon was produced at different physical activation temperatures of 800°C, 850°C, and 900°C. The activated carbon was converted into coin-like design with an additional adhesive of PVA. The electrochemical properties were assessed using a two-electrode system in a 1 M H2SO4 electrolyte. The ANW-based supercapacitor demonstrated good electrochemical performance, with an optimal specific capacitance of 94.6 F/g at 850°C. Additionally, it exhibited an optimal energy density of 12.8 Wh/kg and a power density of 245.516 W/kg. These results suggest that porous carbon derived from ANW biomass holds promise as a sustainable working electrode for green-supercapacitor.

Keywords


Activated carbon; areca-nut waste; biomass; electrode; supercapacitor

Full Text:

PDF

References


1. Wang, W., Shen, Y., Ma, Z., Wei, X., Fan, H., & Bai, Q. (2024). High-performance supercapacitors based on self-supporting thick carbon electrodes from renewable biomass wood. Sustainable Materials and Technologies, 40, e00824.

2. Hu, H., Yan, M., Jiang, J., Huang, A., Cai, S., Lan, L., Ye, K., Chen, D., Tang, K., Zuo, Q., Zeng, Y., & Zhao, Y. (2023). A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization. Science of The Total Environment, 169141.

3. Liu, L., Zhang, W., Lu, B., Cheng, Z., Cao, H., Li, J., Fan, Z., & An, X. (2024). Controllable heteroatoms doped electrodes engineered by biomass based carbon for advanced supercapacitors: A review. Biomass and Bioenergy, 186, 107265.

4. Liu, S., Dong, K., Guo, F., Wang, J., Tang, B., Kong, L., Zhao, N., Hou, Y., Chang, J., & Li, H. (2024). Facile and green synthesis of biomass-derived N, O-doped hierarchical porous carbons for high-performance supercapacitor application. Journal of Analytical and Applied Pyrolysis, 177, 106278.

5. Yuksel, R. & Karakehya, N. (2024). High energy density biomass-derived activated carbon materials for sustainable energy storage. Carbon, 221, 118934.

6. Taer, E., Yanti, N., Apriwandi, A., Ismardi, A., & Taslim, R. (2023). Novel O, P, S self-doped with 3D hierarchy porous carbon from aromatic agricultural waste via H3PO4 activation for supercapacitor electrodes. Diamond and Related Materials, 140, 110415.

7. Taer, E., Apriwandi, A., Farma, R., & Taslim, R. (2024). Synthesis of highly self-NO-dual doped unique carbon blooming flower-like nanofiber derived novel snake-plant waste for ultrahigh energy of solid-state-supercapacitor. Chemical Engineering Science, 285, 119566.

8. Wang, M. X., He, D., Zhu, M., Wu, L., Wang, Z., Huang, Z. H., & Yang, H. (2023). Green fabrication of hierarchically porous carbon microtubes from biomass waste via self-activation for high-energy-density supercapacitor. Journal of Power Sources, 560, 232703.

9. Li, Y. & Qi, B. (2023). Secondary utilization of jujube shell bio-waste into biomass carbon for supercapacitor electrode materials study. Electrochemistry Communications, 152, 107512.

10. Ridho, M. R., Nawawi, D. S., Juliana, I., & Fatriasari, W. (2023). The kraft lignin characteristics of areca leaf sheath isolated by phosphoric acid. Bioresource Technology Reports, 23, 101569.

11. Madyaratri, E. W., Ridho, M. R., Iswanto, A. H., Osvaldová, L. M., Lee, S. H., Antov, P., & Fatriasari, W. (2023). Effect of lignin or lignosulfonate addition on the fire resistance of areca (Areca catechu) particleboards bonded with ultra-low-emitting urea-formaldehyde resin. Fire, 6(8), 299.

12. Tekin, B. & Topcu, Y. (2024). Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance. Journal of Energy Storage, 77, 109879.

13. Muttil, N., Jagadeesan, S., Chanda, A., Duke, M., & Singh, S. K. (2022). Production, types, and applications of activated carbon derived from waste tyres: an overview. Applied Sciences, 13(1), 257.

14. Taer, E., & Taslim, R. (2020). A high potential of biomass leaves waste for porous activated carbon nanofiber/nanosheet as electrode material of supercapacitor. Journal of Physics: Conference Series, 1655(1), 012007.

15. Qiu, C., Jiang, L., Gao, Y., & Sheng, L. (2023). Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials and Design, 230, 111952.

16. Ma, Y., Tian, J., Li, L., Kong, L., Liu, S., Guo, K., & Chen, X. (2021). Interconnected hierarchical porous carbon synthesized from freeze‐dried celery for supercapacitor with high performance. International Journal of Energy Research, 45(6), 9058–9068.

17. Hegde, S. S. & Bhat, B. R. (2024). Sustainable energy storage: Mangifera indica leaf waste-derived activated carbon for long-life, high-performance supercapacitors. RSC advances, 14(12), 8028–8038.

18. Egun, I. L., Akinwolemiwa, B., Yin, B., Tian, H., He, H., Fow, K. L., Zhang, H., Chen, G. Z., & Hu, D. (2024). Conversion of high moisture biomass to hierarchical porous carbon via molten base carbonisation and activation for electrochemical double layer capacitor. Bioresource Technology, 409, 131251.

19. Devi, R., Kumar, V., Kumar, S., Bulla, M., & Mishra, A. K. (2024). Performance optimization of the symmetric supercapacitors based on paddy straw-derived porous activated carbon. Journal of Energy Storage, 79, 110167.

20. Kumar, K., Saxena, R. K., Kothari, R., Suri, D. K., Kaushik, N. K., & Bohra, J. N. (1997). Correlation between adsorption and X-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon, 35(12), 1842–1844.

21. Tadesse, M. G., Kasaw, E., & Lübben, J. F. (2023). Valorization of banana peel using carbonization: Potential use in the sustainable manufacturing of flexible supercapacitors. Micromachines, 14(2), 330.

22. Li, W., Chen, C., Wang, H., Li, P., Jiang, X., Yang, J., & Liu, J. (2022). Hierarchical porous carbon induced by inherent structure of eggplant as sustainable electrode material for high performance supercapacitor. Journal of Materials Research and Technology, 17, 1540–1552.

23. Ozpinar, P., Dogan, C., Demiral, H., Morali, U., Erol, S., Samdan, C., Yildiz, D., & Demiral, I. (2022). Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renewable Energy, 189, 535–548.

24. Taer, E., Deraman, M., Taslim, R., & Iwantono. (2013). Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition. AIP Conference Proceedings, 1554(1), 33–37.

25. Yue, W., Yu, Z., Zhang, X., Liu, H., Zhang, Y., & Ma, X. (2024). Preparation of natural N/O/S co-doped biomass-derived carbon materials for supercapacitors using multistage gas self-exfoliation effect. Journal of Analytical and Applied Pyrolysis, 179, 106525.

26. Rahim, A. H. A., Ramli, N., Nordin, A. N., & Wahab, M. F. A. (2021). Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model. Carbon Trends, 5, 100101.

27. Joseph, S., Singh, G., Lee, J. M., Yu, X., Breese, M. B., Ruban, S. M., Bhargava, S. K., Yi, J., & Vinu, A. (2023). Hierarchical carbon structures from soft drink for multi-functional energy applications of Li-ion battery, Na-ion battery and CO2 capture. Carbon, 210, 118085.

28. Bandara, T. M. W. J., Alahakoon, A. M. B. S., Mellander, B. E., & Albinsson, I. (2024). Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors. Carbon Trends, 15, 100359.

29. Ahmad, N., Rinaldi, A., Sidoli, M., Magnani, G., Morenghi, A., Scaravonati, S., Vezzoni, V., Pasetti, L., Fornasini, L., Ridi, F., Milanese, C., & Pontiroli, D. (2024). High performance quasi-solid-state supercapacitor based on activated carbon derived from asparagus waste. Journal of Energy Storage, 99, 113267.

30. Chaiammart, N., Vignesh, V., Thu, M. M., Eiad-ua, A., Maiyalagan, T., & Panomsuwan, G. (2024). Chemically activated carbons derived from cashew nut shells as potential electrode materials for electrochemical supercapacitors. Carbon Resources Conversion, 100267.

31. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Febriyanto, P., & Eviani, M. (2024). Modification of hydrochar derived from palm waste with thiourea to produce N, S co-doped activated carbon for supercapacitor. Sustainable Chemistry for the Environment, 7, 100132.




DOI: http://dx.doi.org/10.31258/jkfi.21.3.197-204

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image