Harnessing multi-doping porous carbon from Musa paradisiaca L. peel waste for solid-state supercapacitors
Abstract
Keywords
Full Text:
PDFReferences
1. Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable energy in Indonesia: Current status, potential, and future development. Sustainability, 15(3), 2342.
2. Sun, J., Liu, C., Song, X., Zhang, J., Liu, Y., Liang, L., Jiang, R., & Yuan, C. (2022). Electrochemical energy storage devices under particular service environments: Achievements, challenges, and perspective. Applied Physics Reviews, 9(3).
3. Zhang, J., Gu, M., & Chen, X. (2023). Supercapacitors for renewable energy applications: A review. Micro and Nano Engineering, 100229.
4. Samantaray, S., Mohanty, D., Hung, I. M., Moniruzzaman, M., & Satpathy, S. K. (2023). Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review. Journal of Energy Storage, 72, 108352.
5. Lakshmi, K. S., & Vedhanarayanan, B. (2023). High-performance supercapacitors: A comprehensive review on paradigm shift of conventional energy storage devices. Batteries, 9(4), 202.
6. Soffian, M. S., Halim, F. Z. A., Aziz, F., Rahman, M. A., Amin, M. A. M., & Chee, D. N. A. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 9, 100259.
7. Zhang, D., Zhan, X., Zhou, T., Du, J., Zou, K., & Luo, Y. (2024). N/B co-doped porous carbon with superior specific surface area derived from activation of biomass waste by novel deep eutectic solvents for Zn-ion hybrid supercapacitors. Journal of Materials Science and Technology, 193, 22–28.
8. Tekin, B. & Topcu, Y. (2024). Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance. Journal of Energy Storage, 77, 109879.
9. Liu, S., Dong, K., Guo, F., Wang, J., Tang, B., Kong, L., Zhao, N., Hou, Y., Chang, J., & Li, H. (2024). Facile and green synthesis of biomass-derived N, O-doped hierarchical porous carbons for high-performance supercapacitor application. Journal of Analytical and Applied Pyrolysis, 177, 106278.
10. Li, Y., Kong, C., Du, Z., Zhang, J., Qin, X., Zhang, J., Li, C., Jin, Y., & Wang, S. (2024). Oxygen-rich hierarchical porous carbon nanosheets derived from the KOH/KNO3 co-activation treatment of soybean straw for high-performance supercapacitors. Energy Advances, 3(4), 904–915.
11. Li, H., Ma, Y., Wang, Y., Li, C., Bai, Q., Shen, Y., & Uyama, H. (2024). Nitrogen enriched high specific surface area biomass porous carbon: A promising electrode material for supercapacitors. Renewable Energy, 224, 120144.
12. Yue, W., Yu, Z., Zhang, X., Liu, H., He, T., & Ma, X. (2024). Green activation method and natural N/O/S co-doped strategy to prepare biomass-derived graded porous carbon for supercapacitors. Journal of Analytical and Applied Pyrolysis, 178, 106409.
13. Abolore, R. S., Jaiswal, S., & Jaiswal, A. K. (2023). Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications, 100396.
14. Hegde, S. S. & Bhat, B. R. (2024). Biomass waste-derived porous graphitic carbon for high-performance supercapacitors. Journal of Energy Storage, 76, 109818.
15. Xiong, S., Zhao, X., Lv, F., Zhang, W., Yang, N., Zhang, Y., Wang, X., Gong, M., Wang, C., & Li, Z. (2023). Study on the influence of pre-oxidation treatment on surface wettability and supercapacitive performance of coal-based activated carbon. Energy & Fuels, 37(12), 8672–8680.
16. Blachnio, M., Derylo-Marczewska, A., Winter, S., & Zienkiewicz-Strzalka, M. (2021). Mesoporous carbons of well-organized structure in the removal of dyes from aqueous solutions. Molecules, 26(8), 2159.
17. Taslim, R., Apriwandi, A., & Taer, E. (2022). Novel moringa oleifera leaves 3D porous carbon-based electrode material as a high-performance EDLC supercapacitor. ACS omega, 7(41), 36489–36502.
18. Gopalakrishnan, A., & Badhulika, S. (2020). Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of power sources, 480, 228830.
19. Zhao, L., Li, Y., Yu, M., Peng, Y., & Ran, F. (2023). Electrolyte‐wettability issues and challenges of electrode materials in electrochemical energy storage, energy conversion, and beyond. Advanced Science, 10(17), 2300283.
20. Lin, X., Yin, S., Zhang, W., & Li, X. (2022). N/P/O doped porous carbon materials for supercapacitor with high performance. Diamond and Related Materials, 125, 109025.
21. Nayak, M. K., Sahoo, B. B., Thatoi, D. N., Nazari, S., Ali, R., & Chamkha, A. J. (2024). Recent advances on supercapacitor electrode materials from Biowastes-A review. Journal of Science: Advanced Materials and Devices, 100734.
22. Taer, E., Deraman, M., Taslim, R., & Iwantono. (2013). Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition. AIP Conference Proceedings, 1554(1), 33–37.
23. Taer, E., Syamsunar, N., Apriwandi, A., & Taslim, R. (2023). Novel Solanum torvum fruit biomass-derived hierarchical porous carbon nanosphere as excellent electrode material for enhanced symmetric supercapacitor performance. JOM, 75(11), 4494–4506.
24. Rajivgandhi, P., Mariappan, A., Manivannan, M., Dharman, R. K., Oh, T. H., & Sekar, A. (2024). Biomass waste derived from cassia fistula into value-added porous carbon electrode for aqueous symmetric supercapacitors. Inorganic Chemistry Communications, 165, 112552.
25. Rajasekaran, S. J., Grace, A. N., Jacob, G., Alodhayb, A., Pandiaraj, S., & Raghavan, V. (2023). Investigation of different aqueous electrolytes for biomass-derived activated carbon-based supercapacitors. Catalysts, 13(2), 286.
26. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Febriyanto, P., & Eviani, M. (2024). Modification of hydrochar derived from palm waste with thiourea to produce N, S co-doped activated carbon for supercapacitor. Sustainable Chemistry for the Environment, 7, 100132.
27. Thazin, N. M., Chaiammart, N., Thu, M. M., & Panomsuwan, G. (2022). Effect of pre-carbonization temperature on the porous structure and electrochemical properties of activated carbon fibers derived from kapok for supercapacitor applications. Journal of Metals, Materials and Minerals, 32(1), 55–64.
28. Jalalah, M., Rudra, S., Aljafari, B., Irfan, M., Almasabi, S. S., Alsuwian, T., Patil, A.A., Nayak, A.K., & Harraz, F. A. (2022). Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. Journal of the Taiwan Institute of Chemical Engineers, 132, 104148.
29. Ajay, K. M., Dinesh, M. N., Byatarayappa, G., Radhika, M. G., Kathyayini, N., & Vijeth, H. (2021). Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorganic Chemistry Communications, 127, 108523.
DOI: http://dx.doi.org/10.31258/jkfi.21.3.187-196
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: