Review of raman spectral characteristics of graphene derived from 10 types of biomass

Rita Lestari, Yana Fitri Anggreni, Seftri Harika, Yurike Fatmawati, Delovita Ginting, Romi Fadli Syahputra

Abstract


Graphene is a structure of carbon atoms arranged in a two-dimensional hexagonal shape. The main raw material for graphene synthesis is graphite. Where the source of graphite that is most often synthesized to produce graphene generally comes from mined graphite and biomass graphite. The raw materials include palm shells, coconut shells, sugar cane, walnut shells, commercial graphite, Quercus ilex, coffee, PMDS/Lignin, empty palm fruit bunches and tea. Graphene characteristics can be identified by Raman characteristic curves to determine the D and G peak values of certain graphene structures. This article discusses the Raman characteristics of graphene synthesized from 10 biomasses.  Based on research conducted between 2020 and 2024, it was found that the ID/IG ratio for various materials showed significant variations, with commercial graphite having the lowest value of 0.09, indicating very high crystallinity. Quercus ilex had a ratio of 0.82, followed by coconut shell with 0.85 and walnut shell with 0.98, indicating a relatively regular structure. Palm oil shells show variations in the ID/IG ratio from 1.04 to 1.30, while empty palm fruit bunches are at 1.0. Ingredients such as sugar cane and tea have ratios of 1.34 and 1.4 respectively. Coffee has a fairly high ratio, namely 1.78, and PMDS/Lignin has the highest value of 1.86, indicating the most amorphous structure among all the materials analyzed. There are many ways to apply graphne, one of which is making ink.

Keywords


Biomass precursors; graphene; ID/IG ratio; palm-coconut biomass; raman spectroscopy

References


Othman, R. , Kamal, A. S. , and Jabarullah, N. H. , The effect of changing graphitization temperature toward bio-graphite from Palm Kernel Shell, Production Engineering Archives, 27(2), pp.124–129, 2021.

Baby, R. and Hussein, M. Z. , Ecofriendly approach for treatment of heavy-metal-contaminated water using activated carbon of kernel shell of oil palm, Materials, 13(11), pp.11–13, 2020.

Yeboah, M. L. , Li, X. , and Zhou, S. , Facile fabrication of biochar from palm kernel shell waste and its novel application to magnesium-based materials for hydrogen storage, Materials, 13(3), 2020.

Kurniawan, W. B. , Indriawati, A. , Marina, D. , and Taer, E. , The Potential of Pepper Shell (Piper Nigrum) for Supercapacitor Electrodes, Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), pp.109–116, 2019.

Azahar, A. A. , Nurhafizah, M. D. , Omar, M. R. , Abdullah, N. , and Ul-Hamid, A. , Bio-graphene production from oil palm shell waste valorised through sequential thermal and catalytic means, Carbon Trends, 9pp.100225, 2022.

Ying, T. Y. , Raman, A. A. A. , Bello, M. M. , and Buthiyappan, A. , Magnetic graphene oxide-biomass activated carbon composite for dye removal, Korean Journal of Chemical Engineering, 37(12), pp.2179–2191, 2020.

Widyaningrum, B. A. , Synthesis and characterization of graphene oxide composite with Fe 3 O 4, Materials Science- Poland, 33(3), pp.488–490, 2021.

Sulistyaningrum, V. , Sarjani, Y. , Witri, P. S. , Giovandi, T. , Widiyastuti, W. , Rois, M. F. , and Setyawan, H. , Synthesis of reduced graphene oxide/MnO 2 nanocomposites for oxygen reduction reaction catalyst 2020.

Thangaraj, B. , Solomon, P. R. , Wongyao, N. , Helal, M. I. , Abdullah, A. , Abedrabbo, S. , and Hassan, J. , Synthesis of reduced graphene oxide nanosheets from sugarcane dry leaves by two-stage pyrolysis for antibacterial activity, Nano Materials Science, (August 2023), pp.1–10, 2024.

Yadav, K. K. , Wadhwa, R. , Khan, N. , and Jha, M. , Efficient metal-free supercapacitor based on graphene oxide derived from waste rice, Current Research in Green and Sustainable Chemistry, 4(September 2020), pp.100075, 2021.

Bibi, A. , Bibi, S. , Abu-Dieyeh, M. , and Al-Ghouti, M. A. , New material of polyacrylic acid-modified graphene oxide composite for phenol remediation from synthetic and real wastewater, Environmental Technology and Innovation, 27pp.102795, 2022.

Tatrari, G. , Tewari, C. , Karakoti, M. , Pathak, M. , Jangra, R. , Santhibhushan, B. , Mahendia, S. , and Sahoo, N. G. , Mass production of metal-doped graphene from the agriculture waste ofQuercus ilexleaves for supercapacitors: inclusive DFT study, RSC Advances, 11(18), pp.10891–10901, 2021.

Gómez-Urbano, J. L. , Moreno-Fernández, G. , Arnaiz, M. , Ajuria, J. , Rojo, T. , and Carriazo, D. , Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors, Carbon, 162pp.273–282, 2020.

Lee, C. W. , Jeong, S. Y. , Kwon, Y. W. , Lee, J. U. , Cho, S. C. , and Shin, B. S. , Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring, Sensors and Actuators A: Physical, 334pp.113320, 2022.

Yaqoob, A. A. , Serrà, A. , Ibrahim, M. N. M. , and Yaakop, A. S. , Self-assembled oil palm biomass-derived modified graphene oxide anode: An efficient medium for energy transportation and bioremediating Cd (II) via microbial fuel cells, Arabian Journal of Chemistry, 14(5), 2021.

Sankar, S. , Ahmed, A. T. A. , Inamdar, A. I. , Im, H. , Im, Y. Bin , Lee, Y. , Kim, D. Y. , and Lee, S. , Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors, Materials and Design, 169pp.107688, 2019.

Diharyo , Salampak , Damanik, Z. , and Gumiri, S. , Pengaruh Lama Aktifasi dengan H3Po4 dan Ukuran Butir Arang Cangkang Kelapa Sawit, Prosiding Seminar Nasional Lingkungan Lahan Basah, 5(1), pp.48–54, 2020.

Andas, J. , Rahman, M. L. A. , and Yahya, M. S. M. , Preparation and Characterization of Activated Carbon from Palm Kernel Shell, IOP Conference Series: Materials Science and Engineering, 226(1), 2017.

Amin, S. , Bachmann, R. T. , and Yong, S. K. , Oxidised Biochar from Palm Kernel Shell for Eco-friendly Pollution Management, Scientific Research Journal, 17(2), pp.45, 2020.

Pasaribu, E. , Siburian, R. , and Supeno, M. , Production of Graphene By Coconut Shell As an Electrode Primary Battery Cell, Elkawnie, 9(1), pp.37, 2023.

Omar, H. , Malek, N. S. A. , Nurfazianawatie, M. Z. , Rosman, N. F. , Bunyamin, I. , Abdullah, S. , Khusaimi, Z. , Rusop, M. , and Asli, N. A. , A review of synthesis graphene oxide from natural carbon based coconut waste by Hummer’s method, Materials Today: Proceedings, 75(January), pp.188–192, 2022.

Xiao, X. , Chen, B. , Zhu, L. , and Schnoor, J. L. , Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms, Environmental Science and Technology, 51(21), pp.12644–12652, 2017.

Hu, Z. , Zhao, H. , Wang, B. , Zhang, C. , and Lu, H. , Study on the performance of biochar prepared from walnut shell and traditional graphene electrode plate in the treatment of domestic sewage in microbial fuel cells, Water Science and Technology, 89(11), pp.2880–2893, 2024.

Sigit Rahardi Balai Besar Bahan dan Barang Teknik, S. , Kajian Aplikasi Bahan dengan Konduktivitas Listrik Tinggi untuk Meningkatkan Unjuk Kerja Baterai Ion Litium (Susanto Sigit Rahardi)han dan kajian aplikasi bahan dengan konduktivitas listrik tinggi untuk meningkatkan unjuk kerja baterai ion litium study on2504828(14), pp.2502027, 2017.

Mébarki, M. , Hachem, K. , and Harche, M. K. , Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: Isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions, Polish Journal of Chemical Technology, 21(3), pp.40–47, 2019.

Kim, D. J. , Yoo, J. M. , Suh, Y. , Kim, D. , Kang, I. , Moon, J. , Park, M. , Kim, J. , Kang, K. S. , and Hong, B. H. , Graphene quantum dots from carbonized coffee bean wastes for biomedical applications, Nanomaterials, 11(6), 2021.

Sajab, M. S. , Jauhari, W. N. W. A. R. , Chia, C. H. , Zakaria, S. , Kaco, H. , and Noor, A. M. , Oleophilicity and oil-water separation by reduced graphene oxide grafted oil palm empty fruit bunch fibres, Sains Malaysiana, 47(8), pp.1891–1896, 2018.

Mostapha, M. , Azamkamal, F. , Salleh, K. M. , Amran, U. A. , Gan, S. , and Zakaria, S. , Parameter Optimization on Esterified Oil Palm Empty Fruit Bunch Cellulose (OPEFB), Sains Malaysiana, 50(12), pp.3719–3732, 2021.

Mossfika, E. , Syukri, S. , and Aziz, H. , Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material, Journal of Aceh Physics Society, 9(2), pp.42–47, 2020.

Chemistry, J. O. F. , Penelitian, A. , and Grafena, B. , Journal of chemistry artikel penelitian literatur review: potensi sumber alam sebagai bahan baku grafena1(1), pp.22–31, 2024.

Atomik, J. , Teknik-Teknik Karakterisasi Eksperimental Dalam Analisis Kompleks Logam Transisi Experimental Characterization Techniques for9(1), pp.49–56, 2024.




DOI: http://dx.doi.org/10.31258/jkfi.22.3.267-272

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image