Effectiveness of adding ZnO thin films to metamaterial structures as sensors

Saktioto Saktioto, Yan Soerbakti, Ari Sulistyo Rini, Budi Astuti, Erman Taer, Rahmondia Nanda Setiadi, Syamsudhuha Syamsudhuha, Sofia Anita, Yolanda Rati

Abstract


Metamaterials are artificial materials with the characteristics of a negative refractive index and high resonance sensitivity. Advanced engineering in metamaterials can realize great potential in combination with zinc oxide (ZnO) semiconductor materials, which can increase the efficiency of sensor technology compared to other conventional material models. This research aims to investigate the optical properties and develop an invention for a hybrid sensor media based on a split ring resonator (SRR) metamaterial structure integrated with a thin layer of ZnO. The research methodology was carried out by simulation by designing and characterizing SRR metamaterials which were designed with variations in SRR patterns, geometry, substrate materials, unit cell configurations, and variations in the thickness of the ZnO thin layer. Geometry characterization of SRR metamaterials was carried out using the Nicolson-Ross-Weir electromagnetic (EM) field function approach, specifically the optical parameters permittivity, permeability, and refractive index. They are optimizing the performance of hybrid sensor components based on metamaterials and ZnO thin films using the GHz scale EM field function approach, especially in the reflection, transmission, and absorption spectrum. Analysis of metamaterial characteristics identifies the optical properties of permittivity, permeability, and negative refractive index which are increased and optimized from the thin layer integration model 200 nm thick ZnO in the SRR metamaterial structure with a 3×3 square pattern configuration at a resonance frequency of 1.889 GHz. The performance of the hybrid sensor media provides a resonant frequency of three equal bandwidths in the frequency range 2.89 – 3.52, 5.28 – 6.54, and 7.57 – 8.46 GHz. In addition, the highest absorption spectrum of 73% is at a frequency of ~8 GHz.

Keywords


Metamaterial; refractive index; sensor; ZnO

Full Text:

PDF (INDONESIAN)

References


1. Vafapour, Z. (2019). Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications. IEEE Transactions on Nanobioscience, 18(4), 622–627.

2. Geng, Z., Zhang, X., Fan, Z., Lv, X., & Chen, H. (2017). A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Scientific Reports, 7(1), 1–11.

3. Bakir, M., Karaaslan, M., Unal, E., Akgol, O., & Sabah, C. (2017). Microwave metamaterial absorber for sensing applications. Opto-Electronics Review, 25(4), 318–325.

4. Asad, M., Al Neyadi, S., Al Aidaros, O., Khalil, M., & Hussein, M. (2016). Single port bio-sensor design using metamaterial split ring resonator. 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 1–4.

5. Wu, X., Su, Y., & Shi, J. (2019). Perspective of additive manufacturing for metamaterials development. Smart Materials and Structures, 28(9), 093001.

6. Saktioto, Soerbakti, Y., Syahputra, R. F., Gamal, M. D. H., Irawan, D., Putra, E. H., Darwis, R. S., & Okfalisa. (2022). Improvement of low-profile microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application. Alexandria Engineering Journal, 61(6), 4241–4252.

7. Choudhury, B., Menon, A., & Jha, R. M. (2016). Active terahertz metamaterial for biomedical applications. Active Terahertz Metamaterial for Biomedical Applications, 1–41.

8. Tao, R., Zahertar, S., Torun, H., Liu, Y. R., Wang, M., Lu, Y., ... & Fu, Y. Q. (2020). Flexible and integrated sensing platform of acoustic waves and metamaterials based on polyimide-coated woven carbon fibers. ACS Sensors, 5(8), 2563–2569.

9. Ivanova, T., Harizanova, A., Koutzarova, T., & Vertruyen, B. (2015). Optical characterization of sol–gel ZnO: Al thin films. Superlattices and Microstructures, 85, 101–111.

10. Liu, Y., Li, Y., & Zeng, H. (2013). ZnO-based transparent conductive thin films: doping, performance, and processing. Journal of Nanomaterials, 2013.

11. Karlsson, K. S. R., & Wondraczek, L. (2021). Strengthening of oxide glasses. Encyclopedia of Glass Science, Technology, History, and Culture, 1, 391–404.

12. Lou, C., Liu, X., Wang, Y., Li, R., Huang, L., & Liu, X. (2022). Miniature quartz tuning fork-based broad spectral coverage and high detectivity infrared spectroscopy. Infrared Physics & Technology, 126, 104322.

13. Chang, S. P., Yang, R. H., & Lin, C. H. (2021). Development of indium titanium zinc oxide thin films used as sensing layer in gas sensor applications. Coatings, 11(7), 807.

14. Ali, E. M., Yahaya, N. Z., Perumal, N., & Zakariya, M. A. (2017a). Design of microstrip patch antenna at 900 MHz for charging mobile applications. Journal of Engineering and Applied Sciences, 12(4), 988–993.

15. Salim, A., & Lim, S. (2018). Review of recent metamaterial microfluidic sensors. Sensors, 18(1), 232.

16. Dhillon, A. S., Mittal, D., & Sidhu, E. (2017). THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik, 144, 634–641.

17. Xie, X., Wu, D., Wu, H., Hou, C., Sun, X., Zhang, Y., ... & Du, W. (2020). Dielectric parameters of activated carbon derived from rosewood and corncob. Journal of Materials Science: Materials in Electronics, 31(20), 18077–18084.

18. Peimyoo, N., Wu, H. Y., Escolar, J., De Sanctis, A., Prando, G., Vollmer, F., Withers, F., Riis-Jensen, A. C., Craciun, M. F., Thygesen, K. S., & Russo, S. (2020). Engineering dielectric screening for potential-well arrays of excitons in 2D materials, ACS Applied Materials & Interfaces, 12(49), 55134–55140.

19. Singh, C. A., Ngangbam, C., Ranjan, A., Kumari, I., & Singh, K. J. (2017). Simulation and experimental study of ZnO thin film deposited over p-Si with Al contact. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 1–4.

20. Mahmud, M., Islam, M. T., Misran, N., Singh, M. J., & Mat, K. (2017). A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications. Applied Sciences, 7(11), 1149.

21. Tyszka-Zawadzka, A., Janaszek, B., & Szczepański, P. (2017). Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands. Optics Express, 25(7), 7263–7272.

22. Ali, T., Mohammad, S. A., & Biradar, R. C. (2017b, May). A novel metamaterial rectangular CSRR with pass band characteristics at 2.95 and 5.23 GHz. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 256–260.

23. Zhang, Q., Ma, Q., Yan, S., Wu, F., He, X., & Jiang, J. (2015). Tunable terahertz absorption in graphene-based metamaterial. Optics Communications, 353, 70–75.

24. Rybin, O., & Shulga, S. (2017). Magnetically tuned two-component microwave metamaterial. Progress In Electromagnetics Research M, 56, 63–70.

25. Zarrabi, F. B., Pirooj, A., & Pedram, K. (2019). Metamaterial loads used in microstrip antenna for circular polarization. International Journal of RF and Microwave Computer‐Aided Engineering, 29(10), e21869.

26. Kumar, S. A., & Shanmuganantham, T. (2014). Design and analysis of implantable CPW fed bowtie antenna for ISM band applications. AEU-International Journal of Electronics and Communications, 68(2), 158–165.

27. Cismasu, M., & Gustafsson, M. (2013). Antenna bandwidth optimization with single frequency simulation. IEEE Transactions on Antennas and Propagation, 62(3), 1304–1311.

28. Armelles, G., Bergamini, L., Zabala, N., García, F., Dotor, M. L., Torné, L., ... & Cebollada, A. (2018). Metamaterial platforms for spintronic modulation of mid-infrared response under very weak magnetic field. ACS Photonics, 5(10), 3956–3961.

29. Monticone, F., & Alù, A. (2014). The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters. Journal of Materials Chemistry C, 2(43), 9059–9072.

30. Krzysztofik, W. J., & Brambila, F. (2017). Fractals in antennas and metamaterials applications. Fractal Analysis: Applications in Physics, Engineering and Technology, 953–978.

31. Yang, F., Wang, E., Shen, X., Zhang, X., Yin, Q., Wang, X., ... & Peng, W. (2022). Optimal Design of Acoustic Metamaterial of Multiple Parallel Hexagonal Helmholtz Resonators by Combination of Finite Element Simulation and Cuckoo Search Algorithm. Materials, 15(18), 6450.

32. Dang, Z. M., Yuan, J. K., Yao, S. H., & Liao, R. J. (2013). Flexible nanodielectric materials with high permittivity for power energy storage. Advanced Materials, 25(44), 6334–6365.

33. Thévenot, J., Oliveira, H., Sandre, O., & Lecommandoux, S. (2013). Magnetic responsive polymer composite materials. Chemical Society Reviews, 42(17), 7099–7116.

34. Jing, X., Xu, Y., Gan, H., He, Y., & Hong, Z. (2019). High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access, 7, 144945–144956.

35. Roy, A. B., Das, S., Kundu, A., Banerjee, C., & Mukherjee, N. (2017). c-Si/n-ZnO-based flexible solar cells with silica nanoparticles as a light trapping metamaterial. Physical Chemistry Chemical Physics, 19(20), 12838–12844.

36. Zhao, Y., Hao, L., Zhang, X., Tan, S., Li, H., Zheng, J., & Ji, G. (2022). A novel strategy in electromagnetic wave absorbing and shielding materials design: multi‐responsive field effect. Small Science, 2(2), 2100077.

37. Liu, Z., Liu, Z., Li, J., Li, W., Li, J., Gu, C., & Li, Z. Y. (2016). 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Scientific Reports, 6(1), 27817.

38. Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E., & Karaaslan, M. (2019). Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E: Low-dimensional systems and Nanostructures, 114, 113593.

39. Ademgil, H., & Haxha, S. (2015). PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors, 15(12), 31833–31842.




DOI: http://dx.doi.org/10.31258/jkfi.21.1.13-24

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image