Classification of maturity levels of oil palm fresh fruit bunches using LED-based multispectral imaging methods and principal component analysis
Abstract
Keywords
Full Text:
PDF (INDONESIAN)References
1. Abasi, S., Minaei, S., Jamshidi, B., & Fathi, D. (2018). Dedicated non-destructive devices for food quality measurement: A review. Trends in Food Science & Technology, 78, 197–205.
2. Tan, J. Y., Ker, P. J., Lau, K. Y., Hannan, M. A., & Tang, S. G. H. (2019). Applications of photonics in agriculture sector: A review. Molecules, 24(10), 2025.
3. El-Rahman, S. A. (2016). Big data analysis: hyperspectral image processing for agriculture applications. International Journal of Computing and Digital Systems, 5(04).
4. Dong, X., Jakobi, M., Wang, S., Köhler, M. H., Zhang, X., & Koch, A. W. (2019). A review of hyperspectral imaging for nanoscale materials research. Applied Spectroscopy Reviews, 54(4), 285–305.
5. Fu, X. & Chen, J. (2019). A review of hyperspectral imaging for chicken meat safety and quality evaluation: application, hardware, and software. Comprehensive Reviews in Food Science and Food Safety, 18(2), 535–547.
6. ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., & Rousseau, D. (2019). Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An overview. Sensors, 19(5), 1090.
7. Sendin, K., Manley, M., & Williams, P. J. (2018). Classification of white maize defects with multispectral imaging. Food Chemistry, 243, 311–318.
8. Amigo, J. M. & Grassi, S. (2019). Configuration of hyperspectral and multispectral imaging systems. Data Handling in Science and Technology, 32, 17 – 34.
9. Khan, Z. (2014). Hyperspectral imaging and analysis for sparse reconstruction and recognition. arXiv preprint arXiv:1407.7686.
10. MMohd. Hudzari Razali, M. H. R., Abdul Ssomad, M. A. H., & Syazili Roslan, S. R. (2012). A review on crop plant production and ripeness forecasting. Int. J Agric. Crop Sci., 4(2).
11. Bensaeed, O. M., Shariff, A. M., Mahmud, A. B., Shafri, H., & Alfatni, M. (2014). Oil palm fruit grading using a hyperspectral device and machine learning algorithm. IOP Conference Series: Earth and Environmental Science, 20(1), 012017.
12. Yap, X. Y., Chia, K. S., Rahman, H. A., & Teh, V. (2019). A non-destructive oil palm fruit freshness prediction system with artificial neural network. International Journal of Integrated Engineering, 11(8), 159–163.
13. Setiawan, A. W., & Prasetya, O. E. (2020, February). Palm oil fresh fruit bunch grading system using multispectral image analysis in HSV. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 85–88.
14. Liu, C., Liu, W., Lu, X., Ma, F., Chen, W., Yang, J., & Zheng, L. (2014). Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit. PloS One, 9(2), e87818.
15. Ningsih, S. A., Shiddiq, M., Arief, D. S., & Husein, I. R. (2020). Pengunaan pencitraan multispektral pada panjang gelombang 520 nm dan 800 nm untuk mengevaluasi tingkat kematangan TBS kelapa sawit. Komunikasi Fisika Indonesia, 17(3), 144–149.
16. Junkwon, P., Takigawa, T., Okamoto, H., Hasegawa, H., Koike, M., Sakai, K., ... & Bahalayodhin, B. (2009). Potential application of color and hyperspectral images for estimation of weight and ripeness of oil palm (Elaeis guineensis Jacq. var. tenera). Agricultural Information Research, 18(2), 72–81.
DOI: http://dx.doi.org/10.31258/jkfi.21.1.91-98
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: