Erwin Amiruddin, Amir Awaluddin, Muhammad Rizki


The  cobalt  doped  iron oxide  nanoparticles  have  been  prepared  by  ball  milling  method  using  Logas natural sand as a raw material. The milled iron oxide nanoparticles were doped using cobalt with concentration of 0, 5, 10, 15,  and  20  wt.%.  The  structural, magnetic and  optical properties  were  studied  using  X-ray diffractometer (XRD), vibration sample magnetometer (VSM), and UV-Vis  spectroscopy, respectively. The samples  show  cobalt-hematite  nanoparticles  as  indicated  through  XRD  measurement.  The  XRD measurements  confirmed  the  formation  of  crystalline,  rhombohedral  crystal  structure  and  hematite  nanoparticles.    The  average  crystallite  size calculated using Scherrer formula found to be 38.51, 35.67, 33.75, 32.73, and 31.53 nm after being doped with cobalt 0, 5, 10,  15,  and  20  wt. %,  respectively. The samples  exhibited  weak  ferromagnetic  behaviour  with  the  coercivity  ranged from  124  Oe  to 299  Oe.  The optical properties strongly depend on cobalt  content  and  showed  that  the  band  gaps  of  cobalt  doped  hematite  decrease  with  increasing  cobalt  content.  This work suggests that the prepared iron oxide nanoparticles are attractive photo Fenton catalysts for the degradation of methylene blue in the water.


Ball Milling; Cobalt; Logas Natural Sand; Optical; Magnetic and Structural Properties


1. Amiruddin, E., Hadianto, H., Riana, M., Sinuraya, S., Noverdi, M. D., & Fitri, A. S. (2021). Undoped and manganese doped iron oxide nanoparticles for environmental applications. ARPN Journal of Engineering and Applied Sciences, 16(18), 1872–1876.

2. Teja, A. S., & Koh, P. Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22–45.

3. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., ... & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, 1–10.

4. Liu, J., Yang, H., & Xue, X. (2019). Preparation of different shaped α-Fe 2 O 3 nanoparticles with large particles of iron oxide red. Cryst. Eng. Comm, 21(7), 1097–1101.

5. Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7, 1–13.

6. Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501.

7. Araújo, R., Castro, A. C. M., & Fiúza, A. (2015). The use of nanoparticles in soil and water remediation processes. Materials Today: Proceedings, 2(1), 315–320.

8. Tadic, M., Panjan, M., Damnjanovic, V., & Milosevic, I. (2014). Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science, 320, 183–187.

9. Quintin, M., Devos, O., Delville, M. H., & Campet, G. (2006). Study of the lithium insertion–deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy. Electrochimica Acta, 51(28), 6426–6434.

10. Hu, L., Percheron, A., Chaumont, D., & Brachais, C. H. (2011). Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. Journal of Sol-Gel Science and Technology, 60, 198–205.

11. Amiruddin, E., & Prayitno, A. (2019). The synthesis of magnetic nanoparticles from naturaliron sand of Kata beach Pariaman West Sumatera using ball milling method as environmental material. MATEC Web of Conferences, 276

12. Erwin, A., Salomo, S., Adhy, P., Utari, N., Ayu, W., Wita, Y., & Nani, S. (2020). Magnetic iron oxide particles (Fe3O4) fabricated by ball milling for improving the environmental quality. IOP Conference Series: Materials Science and Engineering, 845(1), 012051

13. Razavi-Tousi, S. S., & Szpunar, J. A. (2015). Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 284, 149–158.

14. Amiruddin, E., Awaluddin, A., Hariani, I., Sihombing, R., & Angraini, R. (2020). The Influence of Milling Ball Size on the Structural, Morphological and Catalytic Properties of Magnetite (Fe3O4) Nanoparticles toward Methylene Blue Degradation. Journal of Physics: Conference Series, 1655(1), 012006.

15. Hadianto, H., Amiruddin, E., Venera, R. S. P., & Aprilia, V. (2020). Structural and Morphological Properties of Undoped and Manganese Doped Hematite Nanoparticles Prepared by Ball Milling Method. Journal of Physics: Conference Series, 1655(1), 012013.

16. Krishnan, K. M., Pakhomov, A. B., Bao, Y., Blomqvist, P., Chun, Y., Gonzales, M., ... & Roberts, B. K. (2006). Nanomagnetism and spin electronics: materials, microstructure and novel properties. Journal of Materials Science, 41, 793–815.

17. Supattarasakda, K., Petcharoen, K., Permpool, T., Sirivat, A., & Lerdwijitjarud, W. (2013). Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technology, 249, 353–359.

18. Park, K. W., & Kolpak, A. M. (2018). Understanding photocatalytic overall water splitting on CoO nanoparticles: Effects of facets, surface stoichiometry, and the CoO/water interface. Journal of Catalysis, 365, 115–124.

19. Xu, C., Sun, F., Gao, H., & Wang, J. (2013). Nanoporous platinum–cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Analytica Chimica Acta, 780, 20–27.

20. Lin, J., Lin, Y., Liu, P., Meziani, M. J., Allard, L. F., & Sun, Y. P. (2002). Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. Journal of the American Chemical Society, 124(38), 11514–11518.

21. Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007–3015.

22. Satheesh, R., Vignesh, K., Suganthi, A., & Rajarajan, M. (2014). Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles. Journal of environmental chemical engineering, 2(4), 1956–1968.

23. Erwin & Prayitno, A. (2017). Magnetic Exchange Interaction in Cobalt Samarium Thin Films for High Density Magnetic. Recording Media ARPN Journal of Engineering and Applied Sciences, 12(12), 3832.

24. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (B), 15(2), 627–637.

25. Bhar, S. K., Mukherjee, N., Maji, S. K., Adhikary, B., & Mondal, A. (2010). Synthesis of nanocrystalline iron oxide ultrathin films by thermal decomposition of iron nitropruside: structural and optical properties. Materials Research Bulletin, 45(12), 1948–1953.

26. Gilbert, B., Frandsen, C., Maxey, E. R., & Sherman, D. M. (2009). Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy. Physical Review B, 79(3), 035108.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: