PREPARASI NANOPARTIKEL OKSIDA BESI BERBASIS PASIR ALAM LOGAS DIDOPING KOBALT SEBAGAI MATERIAL LINGKUNGAN
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Amiruddin, E., Hadianto, H., Riana, M., Sinuraya, S., Noverdi, M. D., & Fitri, A. S. (2021). Undoped and manganese doped iron oxide nanoparticles for environmental applications. ARPN Journal of Engineering and Applied Sciences, 16(18), 1872–1876.
2. Teja, A. S., & Koh, P. Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22–45.
3. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., ... & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, 1–10.
4. Liu, J., Yang, H., & Xue, X. (2019). Preparation of different shaped α-Fe 2 O 3 nanoparticles with large particles of iron oxide red. Cryst. Eng. Comm, 21(7), 1097–1101.
5. Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7, 1–13.
6. Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501.
7. Araújo, R., Castro, A. C. M., & Fiúza, A. (2015). The use of nanoparticles in soil and water remediation processes. Materials Today: Proceedings, 2(1), 315–320.
8. Tadic, M., Panjan, M., Damnjanovic, V., & Milosevic, I. (2014). Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science, 320, 183–187.
9. Quintin, M., Devos, O., Delville, M. H., & Campet, G. (2006). Study of the lithium insertion–deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy. Electrochimica Acta, 51(28), 6426–6434.
10. Hu, L., Percheron, A., Chaumont, D., & Brachais, C. H. (2011). Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. Journal of Sol-Gel Science and Technology, 60, 198–205.
11. Amiruddin, E., & Prayitno, A. (2019). The synthesis of magnetic nanoparticles from naturaliron sand of Kata beach Pariaman West Sumatera using ball milling method as environmental material. MATEC Web of Conferences, 276
12. Erwin, A., Salomo, S., Adhy, P., Utari, N., Ayu, W., Wita, Y., & Nani, S. (2020). Magnetic iron oxide particles (Fe3O4) fabricated by ball milling for improving the environmental quality. IOP Conference Series: Materials Science and Engineering, 845(1), 012051
13. Razavi-Tousi, S. S., & Szpunar, J. A. (2015). Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 284, 149–158.
14. Amiruddin, E., Awaluddin, A., Hariani, I., Sihombing, R., & Angraini, R. (2020). The Influence of Milling Ball Size on the Structural, Morphological and Catalytic Properties of Magnetite (Fe3O4) Nanoparticles toward Methylene Blue Degradation. Journal of Physics: Conference Series, 1655(1), 012006.
15. Hadianto, H., Amiruddin, E., Venera, R. S. P., & Aprilia, V. (2020). Structural and Morphological Properties of Undoped and Manganese Doped Hematite Nanoparticles Prepared by Ball Milling Method. Journal of Physics: Conference Series, 1655(1), 012013.
16. Krishnan, K. M., Pakhomov, A. B., Bao, Y., Blomqvist, P., Chun, Y., Gonzales, M., ... & Roberts, B. K. (2006). Nanomagnetism and spin electronics: materials, microstructure and novel properties. Journal of Materials Science, 41, 793–815.
17. Supattarasakda, K., Petcharoen, K., Permpool, T., Sirivat, A., & Lerdwijitjarud, W. (2013). Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technology, 249, 353–359.
18. Park, K. W., & Kolpak, A. M. (2018). Understanding photocatalytic overall water splitting on CoO nanoparticles: Effects of facets, surface stoichiometry, and the CoO/water interface. Journal of Catalysis, 365, 115–124.
19. Xu, C., Sun, F., Gao, H., & Wang, J. (2013). Nanoporous platinum–cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Analytica Chimica Acta, 780, 20–27.
20. Lin, J., Lin, Y., Liu, P., Meziani, M. J., Allard, L. F., & Sun, Y. P. (2002). Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. Journal of the American Chemical Society, 124(38), 11514–11518.
21. Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007–3015.
22. Satheesh, R., Vignesh, K., Suganthi, A., & Rajarajan, M. (2014). Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles. Journal of environmental chemical engineering, 2(4), 1956–1968.
23. Erwin & Prayitno, A. (2017). Magnetic Exchange Interaction in Cobalt Samarium Thin Films for High Density Magnetic. Recording Media ARPN Journal of Engineering and Applied Sciences, 12(12), 3832.
24. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (B), 15(2), 627–637.
25. Bhar, S. K., Mukherjee, N., Maji, S. K., Adhikary, B., & Mondal, A. (2010). Synthesis of nanocrystalline iron oxide ultrathin films by thermal decomposition of iron nitropruside: structural and optical properties. Materials Research Bulletin, 45(12), 1948–1953.
26. Gilbert, B., Frandsen, C., Maxey, E. R., & Sherman, D. M. (2009). Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy. Physical Review B, 79(3), 035108.
DOI: http://dx.doi.org/10.31258/jkfi.20.3.293-300
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: