An internet of things-based monitoring system for agricultural land suitability for oil palm planting

Amriansyah Simatupang, Mulkan Iskandar Nasution, Muhammad Nuh


Oil palm is the most productive type of plant in producing vegetable oil. The development of the industrial revolution led to an explosion in demand for vegetable oil so palm oil was a major contributor to the country's foreign exchange. Indonesia is one of the countries with the largest oil palm plantations in the world. However, the yields produced are still not optimal due to several factors, namely the condition of soil pH, soil moisture, and the surrounding temperature. Soil contains nutrients such as nitrogen (N), potassium (K), and phosphorus (P) which oil palm plants need in certain amounts to grow. To find out the quality of the soil, several methods are carried out by taking a soil sample and using a soil pH meter, however, this method requires a long time and the measurement is only limited to measuring soil pH. This research produced a system for detecting soil pH, soil moisture, and temperature around the soil on an IoT-based land that will be planted with oil palm, as the controller is NodeMCU ESP32. This tool displays soil pH, soil moisture, and air temperature on the LCD screen and the Blynk application page so that it can be accessed anytime and anywhere. This will make it easier for oil palm farmers to obtain accurate information before planting oil palm on vacant land. After testing and data collection, the soil pH sensor has a good correlation with an error rate of 1.71%, soil moisture of 1.23%, and air temperature of 4.04%. So that this sensor can be implemented on vacant land before planting oil palm.


Air temperature (DHT 11); ESP32; IoT; palm oil; soil moisture; soil pH

Full Text:



1. Alatas, A. (2015). Trend produksi dan ekspor minyak sawit (CPO) Indonesia. AGRARIS: Journal of Agribusiness and Rural Development Research, 1(2), 114–124.

2. Nugroho, T. C., Oksana, O., & Aryanti, E (2013). Analisis sifat kimia tanah gambut yang dikonversi menjadi perkebunan. Jurnal Agroteknologi, 4(1), 25–30.

3. Afrizon, A. (2017). Pertumbuhan Bibit Kelapa Sawit (Elaeis guineensis Jacq.) Dengan Pemberian Pupuk Organik dan Anorganik. AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian, 4(1), 95–105.

4. Utomo, G. D., Triyanto, D., & Ristian, U. (2021). Sistem monitoring dan kontrol pembibitan kelapa sawit berbasis internet of things. Coding Jurnal Komputer dan Aplikasi, 9(02), 176–185.

5. Jauhary, T. (2018). Aplikasi Sistem Monitoring Tanaman Berbasis Android. Doctoral dissertation, Universitas Komputer Indonesia.

6. Wigena, I. G. P., Sudradjat, S. R. P., & Sitorus, H. S. (2009). Karakterisasi tanah dan iklim serta kesesuaiannya untuk kebun kelapa sawit plasma di Sei Pagar, Kabupaten Kampar, Provinsi Riau. Jurnal Tanah dan Iklim, 30, 1–16.

7. Wang, C., Daneshmand, M., Dohler, M., Mao, X., Hu, R. Q., & Wang, H. (2013). Guest Editorial-Special issue on internet of things (IoT): Architecture, protocols and services. IEEE Sensors Journal, 13(10), 3505–3510.

8. Pahan, I. (2012). Panduan teknis budidaya kelapa sawit. Penebar Swadaya Grup.

9. Juniardy, V. R., Triyanto, D., & Brianorman, Y. (2014). Prototype alat penyemprot air otomatis pada kebun pembibitan sawit berbasis sensor kelembaban dan mikrokontroler AVR ATMEGA8. Coding Jurnal Komputer dan Aplikasi, 2(3).

10. Wicaksono, A. W., Widasari, E. R., & Utaminingrum, F. (2017). Implementasi Sistem Kontrol dan Monitoring pH pada Tanaman Kentang Aeroponik secara Wireless. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1(5), 386–398.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: