Synthesis and characterization of activated carbon based on young coconut fiber as a supercapacitor electrode

Dio Davana Firdaus Nasution, Awitdrus Awitdrus

Abstract


Supercapacitor is energy storage devices consisting of electrodes, electrolyte, current collectors, and separator. In this research, carbon electrodes are made from young coconut fiber biomass (SKM) waste using ZnCl2 0.5 M as activation agent and variations in  physical activation temperatures. Carbon electrodes preparation begins with a pre-carbonized process of 200ºC temperatures for 1 hour and 30 minutes,  chemical activation using ZnCl2 0.5 M as activation agent, then the carbonization process uses N2 gas as well as physics activation using CO2 in temperature variation of 700ºC, 750ºC, and 800ºC. Analysis of the nature of electrodes cell capacitor based fiber young coconut fibers sample shows that the activation physics 750ºC sample is best, agreeble with the density of carbon electrodes declined by 40.43% after the carbonization-activation process. Carbon electrodes represent semicrystalline based on the characterization of the X-ray diffraction, marked with a ramp peak at 2θ at about 24º and 45º. The SKM-750 has a highest of Lc/La ratio an average number of microcrystalline inner layers (Np), are 0.9 and 3.55. SKM-750 has the highest of specific capacitance value, namely 245.45 F/g.

Keywords


Activated carbon; electrode; physical activation; supercapacitor; young coconut fiber

Full Text:

PDF

References


1. Miller, J. R. & Burke, A. (2008). Electrochemical capacitors: challenges and opportunities for real-world applications. The Electrochemical Society Interface, 17(1), 53.

2. Samantara, A. K., Ratha, S., Samantara, A. K., & Ratha, S. (2018). Components of supercapacitor. Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective, 11–39.

3. Awang, Y., Shaharom, A. S., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American journal of agricultural and biological sciences, 4(1), 63–71.

4. Viju, N., Satheesh, S., & Vincent, S. G. P. (2013). Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract. Saudi Journal of Biological Sciences, 20(1), 85–91.

5. Paskawati, Y. A., & Retnoningtyas, E. S. (2017). Pemanfaatan sabut kelapa sebagai bahan baku pembuatan kertas komposit alternatif. Widya Teknik, 9(1), 12–21.

6. Hanifa, Z., & Awitdrus, A. (2022). Pembuatan Elektroda Karbon dari Biomassa Sabut Kelapa Muda dengan Aktivator KOH Sebagai Aplikasi Sel Superkapasitor. Indonesian Physics Communication, 19(1), 45–50.

7. Sudibandriyo, M. & Lydia, L. (2011). Karakteristik luas permukaan karbon aktif dari ampas tebu dengan aktivasi kimia. Jurnal Teknik Kimia Indonesia, 10(3), 149–156.

8. Hartati, S. D., Taer, E., Sugianto, S., & Taslim, R. (2016). Pengaruh variasi suhu aktivasi fisika terhadap sifat fisis dan elektrokimia elektroda karbon superkapasitor dari limbah kulit pisang. Spektra: Jurnal Fisika dan Aplikasinya, 1(2), 165–170.

9. Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda. Indonesian Journal of Industrial Research, 12(1), 15–20.

10. Farma, R., Lestari, A. N. I., & Apriyani, I. (2021, October). Supercapacitor cell electrodes derived from nipah fruticans fruit coir biomass for energy storage applications using acidic and basic electrolytes. Journal of Physics: Conference Series, 2049(1), 012043.

11. Miller, J. R. & Simon, P. (2008). Electrochemical capacitors for energy management. Science, 321(5889), 651–652.

12. Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261.

13. Farma, R., Winalda, B., & Apriyani, I. (2023). The self-adhesive properties of carbon activated-like shape coin derived from Palmae plant waste and used as high-performance supercapacitor electrodes. Journal of Electrochemical Energy Conversion and Storage, 20(2), 020902.

14. Simanjuntak, M. T., & Awitdrus, A. Fabrikasi elektroda karbon dari sabut kelapa muda dengan aktivasi fisika sebagai aplikasi superkapasitor. Indonesian Physics Communication, 19(2), 65–68.




DOI: http://dx.doi.org/10.31258/jkfi.21.3.261-264

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image