PEMANFAATAN LIMBAH SERABUT KELAPA MUDA SEBAGAI ELEKTRODA KARBON SUPERKAPASITOR DENGAN VARIASI KONSENTRASI AKTIVATOR ZnCl2

Ridho Nopriansyah, Awitdrus Awitdrus

Abstract


The chemical activation method is a simple and low-cost activation method that can modify the surface morphology associated with improving the electrochemical properties of supercapacitor cell electrodes. The porous carbon framework was derived from young coconut fiber biomass by optimizing the chemical activation reagent (ZnCl2). Carbon material derived from coconut fiber is a biomass for the application of supercapacitor cell electrodes through the pre-carbonization stage at 200°C for 1 hour 30 minutes, chemical activation using the activating agent ZnCl2 with various concentrations of 0.1, 0.3, and 0.5 M, the carbonization process uses gas N2 with a temperature of 600°C and physical activation using CO2 gas with a temperature of 750°C. The optimum concentration of young coconut fiber-based carbon electrodes is found at a concentration of 0.5 M, which has the highest density shrinkage percentage of 53.11%. X-ray diffraction analysis showed that the sample at a concentration of 0.5 M was amorphous with two wider diffraction angle of 2q at an angle of 24.867° and 44.556°, with the lowest Lc/La ratio of 0.3 and an average microcrystalline layer of 2.3. Analysis of electrochemical properties showed that samples at a concentration of 0.5 M has an optimum specific capacitance of 81.84 F/g in the CV.

Keywords


Carbon Electrodes; Chemical Activation; Specific Capacitance; Supercapacitors; Young Coconut Fiber

References


1. Tumimomor, F. R., & Palilingan, S. C. (2018). Pemanfaatan karbon aktif dari sabut kelapa sebagai elektroda superkapasitor. Fullerene Journal of Chemistry, 3(1), 13–18.

2. Wang, X., Li, Y., Lou, F., Buan, M. E. M., Sheridan, E., & Chen, D. (2017). Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC advances, 7(38), 23859–23865.

3. Pasaribu, F. I. (2020). Superkapasitor Sebagai Penyimpan Energi Menggunakan Bahan Graphene. RELE (Rekayasa Elektrikal dan Energi): Jurnal Teknik Elektro, 2(2), 65–72.

4. Wei, Q., Chen, Z., Cheng, Y., Wang, X., Yang, X., & Wang, Z. (2019). Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 221–227.

5. Lita, A. L., Maulana, A., & Ryswaldi, R. (2022). Characteristics Biochar from Young Coconut Waste based on Particle Size as Améliorant. IOP Conference Series: Earth and Environmental Science, 959(1), 012034.

6. Ayinla, R. T., Dennis, J. O., Zaid, H. M., Sanusi, Y. K., Usman, F., & Adebayo, L. L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of cleaner production, 229, 1427–1442.

7. Farma, R., Husni, H., Apriyani, I., Awitdrus, A., & Taer, E. (2021). Biomass waste-derived rubber seed shell functionalized porous carbon as an inexpensive and sustainable energy material for supercapacitors. Journal of Electronic Materials, 50, 6910–6919.

8. Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda. Jurnal Litbang Industri, 12(1), 15–20.

9. Hor, A. A., & Hashmi, S. A. (2020). Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochimica Acta, 356, 136826.

10. Deraman, M., Daik, R., Soltaninejad, S., Nor, N. S. M., Awitdrus, Farma, R., ... & Othman, M. A. R. (2015). A new empirical equation for estimating specific surface area of supercapacitor carbon electrode from X-ray diffraction. Advanced Materials Research, 1108, 1–7.

11. Farma, R., Maurani, S. F., Apriyani, I., & Rini, A. S. (2021). Fabrication of Carbon Electrodes from Sago Midrib Biomass with Chemical Variation for Supercapacitor Cell Application. Journal of Physics: Conference Series, 2049(1), 012054.

12. Hanifa, Z., & Awitdrus, A. (2022). Pembuatan Elektroda Karbon dari Biomassa Sabut Kelapa Muda dengan Aktivator KOH Sebagai Aplikasi Sel Superkapasitor. Komunikasi Fisika Indonesia, 19(1), 45–50.

13. Liu, T., Zhang, F., Song, Y., & Li, Y. (2017). Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 5(34), 17705–17733.




DOI: http://dx.doi.org/10.31258/jkfi.20.3.301-305

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image