Utilization of young coconut fiber activated carbon with pre-carbonization variations as a supercapacitor electrode

Winda Nofriyanti, Awitdrus Awitdrus


A supercapacitor is an electrochemical device that integrates power supply and charge storage capabilities.  The primary constituents of a supercapacitor consist of electrodes, separator, electrolyte, and current collector. This work focuses on the production of carbon electrodes using coconut fibre biomass waste. The carbonisation process is carried out at three different temperatures: 200ºC, 225ºC, and 250ºC. The resulting samples are labelled as SC-200, SC-225, and SC-250, respectively. The production of Carbon electrodes involves multiple procedures, including pre-carbonization, chemical activation using a ZnCl2 activator at a concentration of 0.5 M, followed by carbonisation using N2 gas at a temperature of 600ºC, and physical activation using CO2 gas at a temperature of 750ºC. The mass reduces by 23.01%, 27%, and 36.51% following pre-carbonization. The sample with the greatest density value is SC-225, which has a mass loss percentage of 41.66%. The results of cyclic voltammetry indicate that the SC-225 supercapacitor cell has the maximum capacitance value of 199.82 F/g. To summarise, the SC-225 temperature can function as an activated carbon electrode that enhances the performance of the supercapacitor electrode.


Electrode carbon, pre-carbonization, supercapacitor, young cocofiber

Full Text:



1. Libich, J., Máca, J., Vondrák, J., Čech, O. & Sedlaříková, M. (2018). Supercapacitors: Properties and applications. Journal of Energy Storage, 17, 224–227.

2. Nopriansyah, R. & Awitdrus, A. (2023). Pemanfaatan limbah serabut kelapa muda sebagai elektroda karbon superkapasitor dengan variasi konsentrasi aktivator ZnCl2. Indonesian Physics Communication, 20(3), 301–305.

3. Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S. & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118.

4. Lestari, A. N. I., Farma, R., Asyana, V. & Awitdrus, A. (2020). Fabrikasi dan karakterisasi elektroda karbon dari biomassa serabut buah nipah dengan variasi konsentrasi aktivator KOH. Komunikasi Fisika Indonesia, 17(3), 127–133.

5. Suwandi, D. A. & Awitdrus, A. (2021). Karakterisasi sifat elektrokimia elektroda karbon berbahan pelepah aren menggunakan larutan elektrolit Na2SO4. Indonesian Physics Communication, 18(1), 88–92.

6. Zhang, X., Han, S., Fan, C., Li, L. & Zhang, W. (2015). Effects of pre-carbonization on the structure and performance of hard carbon in lithium cells. Journal of Solid State Electrochemistry, 19, 715–721.

7. Simanjuntak, M. T. & Awitdrus, A. (2022). Fabrikasi elektroda karbon dari sabut kelapa muda dengan aktivasi fisika sebagai aplikasi superkapasitor. Indonesian Physics Communication, 19(2), 65–68.

8. Hanifa, Z. & Awitdrus, A. (2022). Pembuatan Elektroda Karbon dari Biomassa Sabut Kelapa Muda dengan Aktivator KOH Sebagai Aplikasi Sel Superkapasitor. Indonesian Physics Communication, 19(1), 45–50.

9. Simanjuntak, A. C., & Awitdrus, A. (2022). Karakterisasi sifat elektrokimia elektroda karbon aktif berbasis limbah sabut kelapa muda menggunakan separator membran kulit telur ayam. Indonesian Physics Communication, 19(1), 31–34.

10. Handayani, R. & Taer, E. (2019). Pengaruh waktu aktivasi terhadap sifat fisis dan elektrokimia sel superkapasitor Dari Sabut Pinang. Indonesian Physics Communication, 16(2), 87–90.

11. Putri, M. S. D., Awitdrus, A. & Manullang, R. K. (2020). Penyerapan logam berat Pb dan Cu menggunakan karbon aktif berbasis mahkota nanas dengan variasi konsentrasi kalium hidroksida. Indonesian Physics Communication, 17(1), 30–34.

12. Awitdrus, Rukmana, D. V. & Farma, R. (2016). Pengaruh waktu perendaman dalam pembuatan karbon aktif cangkang buah ketapang dengan pengaktifan kimia berbantuan iradiasi gelombang mikro. Indonesian Physics Communication, 13(13), 870–875.

13. Habibah, M. D. (2016). Variasi holding time suhu aktivasi karbon aktif dari tempurung kluwak (Pangium edule) sebagai elektroda pada superkapasitor. Inovasi Fisika Indonesia, 5(1), 19–22.

14. Widarti, Awitdrus, Farma, R. & Iwantono. (2016). Pengaruh daya iradiasi gelombang mikro terhadap sifat-sifat fisika karbon aktif kayu Eucalyptus. Indonesian Physics

Communication, 13(12), 773–780.

15. Rahim, A. H. A., Ramli, N., Nordin, A. N. & Wahab, M. F. A. (2021). Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model. Carbon Trends, 5, 100101.

16. Hebbar, K. B., Abhin, P. S., Sanjo Jose, V., Neethu, P., Santhosh, A., Shil, S. & Prasad, P. V. (2022). Predicting the potential suitable climate for coconut (Cocos nucifera L.) cultivation in India under climate change scenarios using the MaxEnt model. Plants, 11(6), 731.

17. Junita, E., Pane, T. C. & Darus, M. B. (2023). Processing coconut husk waste to gain profit in Tanjung Pura Subdistrict, Langkat Regency, North Sumatera Province. IOP Conference Series: Earth and Environmental Science, 1241(1).

18. Sekali, S. U. K. & Awitdrus, A. Fabrication of carbon electrodes from young coconut fiber by varying the carnonization temperature as a supercapacitor application. Indonesian Physics Communication, 21(1), 63–66.

19. Kurniawan, P., Taer, E., Malik, U. & Taslim, R. (2018). Pengaruh Konsentrasi KOH Terhadap Sifat Fisis Dan Elektrokimia Elektroda Karbon Dari Limbah Kulit Durian Sebagai Sel Superkapasitor. Indonesian Physics Communication, 15(1), 62–66.

20. González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, 1393–1414.

DOI: http://dx.doi.org/10.31258/jkfi.21.2.%25p


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: