Fabrication of carbon electrodes from young coconut fiber by varying the carbonization temperature as a supercapacitor application

Sri Ulina Karo Sekali, Awitdrus Awitdrus

Abstract


Supercapacitors an electrochemical energy storage devices that can provide a higher energy density than conventional dielectric capacitors. The most important component of a supercapacitor cell is the electrodes. In this study, the supercapacitor cell electrodes used are based on young coconut fiber with carbonization temperature variations of 500°C, 600°C, and 700°C. The pre-carbonization process is operated using a temperature of 200°C for 90 minutes, chemical activation using an activating agent ZnCl2 0.5 M, carbonization using N2 gas at various temperatures, and physical activation using CO2 gas at 800°C. The highest density value is the CNL-600 sample with a density loss percentage value of 50.96%. Analysis of electrochemical properties showed that samples with a carbonization temperature of 600°C had the highest specific capacitance values, namely 190.3 F/g using the CV method. This shows that the best sample is the sample with a carbonization temperature of 600°C.

Keywords


Carbon electrode; carbonization temperature; supercapasitor; young coconut fiber

References


1. Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906.

2. Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31–49.

3. Samantara, A. K., Ratha, S., Samantara, A. K., & Ratha, S. (2018). Components of supercapacitor. Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective, 11–39.

4. Kuzmenko, V., Bhaskar, A., Staaf, H., Lundgren, P., & Enoksson, P. (2015). Sustainable supercapacitor components from cellulose. 2015 IEEE International Conference on Automation Science and Engineering, 456–458.

5. Kondo, Y., & Arsyad, M. (2018). Analisis kandungan lignin, sellulosa, dan hemisellulosa serat sabut kelapa akibat perlakuan alkali. INTEK: Jurnal Penelitian, 5(2), 94–97.

6. Zhang, L. L., Zhou, R., & Zhao, X. S. (2010). Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20(29), 5983–5992.

7. Hsu, L. Y., & Teng, H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology, 64(1-3), 155–166.

8. Taer, E., Taslim, R., Aini, Z., Hartati, S. D., & Mustika, W. S. (2017, January). Activated carbon electrode from banana-peel waste for supercapacitor applications. AIP Conference Proceedings, 1801(1).

9. Apriyani, I., & Farma, R. (2021). Pembuatan elektroda karbon aktif dari tandan kosong buah aren dengan variasi suhu karbonisasi. Komunikasi Fisika Indonesia, 18(1), 58–63.

10. Awitdrus, A., Suwandi, D. A., Agustino, A., Taer, E., & Farma, R. (2021). The production of supercapacitor carbon electrodes based on sugar palm fronds using chemical and physical activation combination. Journal of Aceh Physics Society, 10(3), 66–69.

11. Yorgun, S., Vural, N., & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 122(1-3), 189–194.




DOI: http://dx.doi.org/10.31258/jkfi.21.1.%25p

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image