Indah Tamara Sitorus, Erwin Amiruddin, Juandi Muhammad, Erman Taer


The purpose of this study is to determine the magnetic properties expressed in the hysteresis loop as well as the morphology of iron oxide nanoparticles from iron sand of Logas Village, natural sand, which were doped with chromium. The separation between magnetic and non-magnetic particles was carried out using the strong magnet neodymium iron boron (NdFeB). Magnetic nanoparticle preparation was carried out by ball milling method for 100 hours which is called BM3. The BM3 product was divided into three parts with the same amount of weight namely  BM3A, BM3B, and BM3C. These products was doped with chromium with concentrations of 0, 10, and 20 (wt%) using ball milling for 20 hours. Magnetic properties were tested using a vibrating sample magnetometer and nanoparticle morphology with a scanning electron microscope (SEM). The magnetic properties of the samples were studied based on loop hysteresis showed that saturation magnetization, remanent magnetization, coercivity, loop squareness, and loop area decreased along with the addition of chromium doping concentration in the sample. The results of the SEM test showed that as the doping concentration was added to the sample the particle size became smaller, namely 1.316, 1.308, and 0.856 μm.


Ball Milling; Chromium; Logas Natural Sand; Loop Hysteresis; Morphology


1. Bødker, F., Hansen, M. F., Koch, C. B., Lefmann, K., & Mørup, S. (2000). Magnetic properties of hematite nanoparticles. Physical Review B, 61(10), 6826.

2. Nurhidayah, I., Sinuraya, S., Amiruddin, E., & Setiadi, R. N. (2023). Analisa perubahan suseptibilitas dan komposisi serta ukuran partikel oksida besi sebagai fungsi kecepatan putaran tabung ball milling. Komunikasi Fisika Indonesia, 20(1), 75–82.

3. Kurniawan, R., Salomo, S., Erwin, E., & Defrianto, D. (2022). Pengaruh doping mangan terhadap komposisi dan sifat kristalinitas partikel oksida besi pasir alam Sungai Rokan dipreparasi dengan metode ball milling. Komunikasi Fisika Indonesia, 19(2), 113–118.

4. Gubin, S. P., Koksharov, Y. A., Khomutov, G. B., & Yurkov, G. Y. (2005). Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 74(6), 489.

5. Safira, T. D., Sinuraya, S., Amiruddin, E., & Setiadi, R. N. (2023). Analisa kecepatan putaran tabung ball mllllng terhadap suseptibilitas magnetik dan komposlsl serta ukuran partlkel okslda besi pasir alam sungai rokan. Komunikasi Fisika Indonesia, 20(1), 83–90.

6. Amiruddin, E., Awaluddin, A., Sihombing, M., Royka, A., & Syahrul, T. (2020). Morphology and structural properties of undoped and cobalt doped magnetic iron oxide particles for improving the environmental quality. International Journal of Engineering and Advanced Technology (IJEAT), 9(6), 2249–8958.

7. Daviny, N., & Erwin, E. (2021). Pengaruh Ukuran Bola Milling terhadap Nilai Suseptibilitas Magnetik dan Distribusi Ukuran Nanopartikel Magnetik Disintesis dari Pasir Pantai Sungai Suci Bengkulu. Komunikasi Fisika Indonesia, 18(3), 204–207.

8. Ahmad, T., Triwikantoro, T., Pratapa, S., & Darminto, D. (2009). Sintesis Partikel Nano Fe3-xMnxO4 Berbasis Pasir Besi dan Karakterisasi Struktur serta Kemagnetannya. Jurnal Nanosains & Nanoteknologi, 1(2), 67–73.

9. Jiles, D. (1991). Introduction to Magnetis and Magnectic Materials. London: Chapman and Hall.

10. Royka, A., & Amiruddin, E. (2021). Penentuan Nilai Suseptibilitas Dan Ukuran Partikel Magnetik Pasir Alam Logas Kabupaten Kuantan Singingi Menggunakan Variasi Ukuran Ball Milling. Komunikasi Fisika Indonesia, 18(1), 42–47.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: