ANALISA PERUBAHAN SUSEPTIBILITAS DAN KOMPOSISI SERTA UKURAN PARTIKEL OKSIDA BESI SEBAGAI FUNGSI KECEPATAN PUTARAN TABUNG BALL MILLING

Indah Nurhidayah, Salomo Sinuraya, Erwin Amiruddin, Rahmondia Nanda Setiadi

Abstract


The magnetic susceptibility, composition and particle size of natural sand has been carried out in Rokan River, Riau Province regency have been determined. Iron sand samples were processed using an iron sand separator (ISS). The magnetic and non-magnetic particles of ISS products were separated using neodymium iron boron (NdFeB) magnet. The product of ball milling (BM) with tube rotational speed functions of 100 rpm, 150 rpm, 200 rpm was milled for 80 hours with BM size of 2 cm. The magnetic susceptibility were determined based on magnetic induction of a selenoid measured using Probe Magnetic Pasco PS-2162. The composition of Rokan river natural sand was measured using x-ray fluorescence. The magnetic particles are determined using scanning electron microscope. The results showed that the magnetic susceptibility increases with increasing BM tube rotational speed 28,138.79 × 10-5 (100 rpm), 29,374.88 × 10-5 (150 rpm), and 30,955.32 × 10-5 (200 rpm). The composition of Fe in the sample has increased from 32.686% to 35,865%, while for Si has decreased from 38.604% to 33.729%. The particle size of natural sand for 80 hours milling displays the particle sizes from  883.4 for 100 rpm to 655.81 for the smallest particle size of the samples synthesized with 200 rpm.

Keywords


Natural Sand; Magnetic Susceptibility; Ball Milling; X-Ray Fluorescence; Scanning Electron Microscope

References


1. Heeschen, K. U., Schicks, J. M., & Oeltzschner, G. (2016). The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition. Fuel, 181, 139–147.

2. Ohta, J., Yasukawa, K., Machida, S., Fujinaga, K., Nakamura, K., Takaya, Y., ... & Kato, Y. (2016). Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions. Geochemical Journal, 50(6), 591–603.

3. Zhensheng, S. H. I., Zhen, Q. I. U., Dazhong, D. O. N. G., Bin, L., Liang, P., & Zhang, M. (2018). Lamina characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China. Petroleum Exploration and Development, 45(2), 358–368.

4. Gunawan, H., & Budiman, A. (2014). Penentuan Persentase dan Nilai Suseptibilitas Mineral Magnetik Bijih Besi yang Berasal dari Tiga Lokasi Tambang Bijih Besi di Sumatera Barat. Jurnal Fisika Unand, 3(4), 249–254.

5. Dunuweera, S. P., & Rajapakse, R. M. G. (2018). Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Advances in Materials Science and Engineering, 2018, 1–11.

6. Ullah, S., Faiz, P., & Leng, S. (2020). Synthesis, Mechanism, and Performance Assessment of Zero‐Valent Iron for Metal‐Contaminated Water Remediation: A Review. CLEAN–Soil, Air, Water, 48(9), 2000080.

7. Pang, Y. L., Lim, S., Ong, H. C., & Chong, W. T. (2016). Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceramics International, 42(1), 9–34.

8. Peiravi, M., Dehghani, F., Ackah, L., Baharlouei, A., Godbold, J., Liu, J., ... & Ghosh, T. (2021). A review of rare-earth elements extraction with emphasis on non-conventional sources: Coal and coal byproducts, iron ore tailings, apatite, and phosphate byproducts. Mining, Metallurgy & Exploration, 38, 1–26.

9. Afdal, A. (2013). Karakterisasi sifat magnet dan kandungan mineral pasir besi Sungai Batang Kuranji Padang Sumatera Barat. Jurnal Ilmu Fisika, 5(1), 24–30.

10. Tiwow, V. A., Arsyad, M., Palloan, P., & Rampe, M. J. (2018). Analysis of mineral content of iron sand deposit in Bontokanang Village and Tanjung Bayang Beach, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 997(1), 012010.

11. Arsyad, M., Tiwow, V. A., & Rampe, M. J. (2018). Analysis of magnetic minerals of iron sand deposit in Sampulungan Beach, Takalar Regency, South Sulawesi using the x-ray diffraction method. Journal of Physics: Conference Series, 1120(1), 012060.

12. Wang, Y., Neyman, A., Arkhangelsky, E., Gitis, V., Meshi, L., & Weinstock, I. A. (2009). Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. Journal of the American Chemical Society, 131(47), 17412–17422.

13. Yadav, R. S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., ... & Enev, V. (2015). Magnetic properties of Co1− xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 378, 190–199.

14. Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., ... & Gao, B. (2021). Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252.

15. Salomo, S., Erwin, A., Usman, M., Muhammad, H., Nita, Y., & Linda, W. (2020). Preparation of Iron Oxide Magnetic Nanoparticles Natural Sand of Rokan River Synthesis with Ball Milling. Journal of Physics: Conference Series, 1655(1), 012018.




DOI: http://dx.doi.org/10.31258/jkfi.20.1.75-82

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image