Yanuar Hamzah, Ariswan Ariswan


Understanding the thermodynamic properties of Ga2Te3  material is a basic concept in material applications. Ga2Te3  material has attracted the attention of many researchers,  especially its application in photodetector devices, light-emitting diodes, nano-electronics, and lithium storage materials. Therefore, this research studied the Ga-Te system thermodynamically optimized crystal temperature using F*A*C*T software. The availability of thermodynamic data from this study may be helpful in the experiments. A thin layer of Ga2Te3 fabricates using the closed space vapor transport method.  A thin layer of Ga2Te3 characterizes by x-ray diffraction and energy dispersive spectroscopy (EDX). The thin layer of Ga2Te3 resulting from deposition is cubic structured crystalline, and its composition is stoichiometric. The results of the thermodynamic study of the deposit of the thin film Ga2Te3 explain a thorough understanding of the formation mechanism of the reactions that occur in the closed space vapor transport method in the vertical reactor.


Thin Film; Ga2Te3; Deposition; Thermodynamics; Enthalpy


1. Chávez, F., Mimila-Arroyo, J., Bailly, F., & Bourgoin, J. C. (1983). Epitaxial GaAs by Close Space Vapor Transport. J. Appl. Phys., 54(11), 6646–6651.

2. Cote, D., Dodelet, J. P., Lombos, B. A., & Dickson, J. I. (1986). Epitaxy of GaAs by the Close-Spaced Vapor Transport Technique. J. Electrochem. Soc., 1986, 133 (9), 1925–1934.

3. Yanuar, H., & Ariswan, A. (2019). Growth Mechanism and Characterization of PbTe0.5Se0.5 Thin Films Used by Closed- Space Vapor Transport in a Vertical Reactor. Reaktor, 19(1), 11–17.

4. Ritenour, A. J., Boucher, J. W., DeLancey, R., Greenaway, A. L., Aloni, S., Boettcher, S. W. (2015). Doping and Electronic Properties of GaAs Grown by Close Spaced Vapor Transport from Powder Sources for Scalable III-V Photovoltaics. Energy Environ. Sci., 8(1), 278-285.

5. H. Yan, X. Liang, S. Dong, Y. Lei, G. Zhang, R. Chen, J. Hu, M. Jing, S. Wang, X. Su, C. Qin, L. Xiao, & S. Jia. (2021). Exploration of exciton dynamics in GaTe nanoflakes via temperature- and power dependent time-resolved photoluminescence spectra. Opt. Express, 29, 8880–8889.

6. Hoang Huy, V. P., Kim, I. T., & Hur, J. (2022). Gallim-Telluride-Based Composite as Promising Lithium Storage Material. Nanomaterials (Basel), 12(19), 3362–3373.

7. Gillan, E. G., & Barron, A. R. (1997). Chemical Vapor Deposition of Hexagonal Gallium Selenide and Telluride Films from Cubane Precursors: Understanding the Envelope of Molecular Control. Chem. Mater., 9, 3037–3048.

8. Kathryn, G., Keesde Groot, C.H., Chitra, G., Andrew L. H., Ruomeng, H., Marek J., William L., & Gillian R. (2013). Low Pressure Chemical Vapour Deposition of Crystalline Ga2Te3 and Ga2Se3 Thin Films from Single Source Precursors Using Telluroether and Selenoether Complexes. Physics Procedia, 46, 142–148.

9. Bhupendra, K., Chandra, S. T., Min-Kyu, P., & Manas, P. (2021). Thermodynamic modelling of the ternary Bi-Ga-Te system for potential application in thermoelectric materials. Calphad, 74, 102326.

10. Castanet, R., & Bergman, C., (1977), Thermodynamic functions and structure of gallium + tellurium liquid alloys, The Journal of Chemical Thermodynamics, 9(12), 1127–1132.

11. Chang-Seok, O., & Dong Nyung, L., (1992), Thermodynamic assessment of the Ga-Te system, Calphad, 16(3), 317–330.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: