Reeky Fardinata, Saktioto Saktioto, Rakhmawati Farma


The model used in this work is a two-dimensional fluid plasma model coupled with Maxwell equations at atmospheric pressure. The model was created by applying different plasma torch parameters using the finite element approach. Three separate stages of the numerical modeling were used to show how the increase in electron density increases with time. It may be inferred from the molecular ion distribution features that the torch's quartz tube's port, which is larger than the tube's center, is where the molecular ions are primarily disseminated. Reduced pressure and the calculated distance from the port to the center of the quartz tube result in a drop in the density ratio of molecular ions to electrons. The research on microwave plasma properties revealed that atmospheric pressure is important for modeling and developing plasma sources, particularly for the conversion of carbon dioxide.


Atmospheric Pressure; Electron Density; Energy; Modeling; Plasma Microwave


1. Samal, S. (2017). Thermal plasma technology: The prospective future in material processing. Journal of cleaner production, 142, 3131–3150.

2. Bahri, M., & Haghighat, F. (2014). Plasma‐B ased Indoor Air Cleaning Technologies: The State of the Art‐R eview. CLEAN–Soil, Air, Water, 42(12), 1667–1680.

3. Guć, M., Reszke, E., Cegłowski, M., & Schroeder, G. (2020). Construction of Plasma Ion Sources to be Applied in Analysis of Small Organic Compounds Using Mass Spectrometry. Plasma Chemistry and Plasma Processing, 40, 235–260.

4. Da Silva, C. L., Sonnenfeld, R. G., Edens, H. E., Krehbiel, P. R., Quick, M. G., & Koshak, W. J. (2019). The plasma nature of lightning channels and the resulting nonlinear resistance. Journal of Geophysical Research: Atmospheres, 124(16), 9442–9463.

5. Menéndez, J. A., Juárez-Pérez, E. J., Ruisánchez, E., Bermúdez, J. M., & Arenillas, A. (2011). Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 49(1), 346–349.

6. Rincón, R., Marinas, A., Muñoz, J., Melero, C., & Calzada, M. D. (2016). Experimental research on ethanol-chemistry decomposition routes in a microwave plasma torch for hydrogen production. Chemical Engineering Journal, 284, 1117–1126.

7. Wali, W. A. (2020). Carbon dioxide conversion control based on microwave plasma technology. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 1–4.

8. Chen, Z., Yin, Z., Chen, M., Hong, L., Xia, G., Hu, Y., ... & Kudryavtsev, A. A. (2014). Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet. Journal of Applied Physics, 116(15).

9. Baeva, M., Andrasch, M., Ehlbeck, J., Weltmann, K. D., & Loffhagen, D. (2014). Study of the spatiotemporal evolution of microwave plasma in argon. IEEE Transactions on Plasma Science, 42(10), 2774–2775.

10. Nowakowska, H., Jasiński, M., & Mizeraczyk, J. (2013). Modelling of discharge in a high-flow microwave plasma source (MPS). The European Physical Journal D, 67, 1–8.

11. Nowakowska, H., Jasinski, M., Debicki, P. S., & Mizeraczyk, J. (2011). Numerical analysis and optimization of power coupling efficiency in waveguide-based microwave plasma source. IEEE Transactions on Plasma Science, 39(10), 1935–1942.

12. Yang, Y., Hua, W., & Guo, S. Y. (2014). Numerical study on microwave-sustained argon discharge under atmospheric pressure. Physics of Plasmas, 21(4).

13. Arcese, E., Rogier, F., & Boeuf, J. P. (2017). Plasma fluid modeling of microwave streamers: Approximations and accuracy. Physics of Plasmas, 24(11).

14. Gudmundsson, J. T., Kawamura, E., & Lieberman, M. A. (2013). A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. Plasma Sources Science and Technology, 22(3), 035011.

15. Miotk, R., Jasiński, M., & Mizeraczyk, J. (2018). Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production. Plasma Sources Science and Technology, 27(3), 035011.

16. Mizeraczyk, J., Jasiński, M., Nowakowska, H., & Dors, M. (2012). Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika, 57, 241–247.

17. Wu, Z., Liang, R., Nagatsu, M., & Chang, X. (2016). The Characteristics of Columniform Surface Wave Plasma Excited Around a Quartz Rod by 2.45 GHz Microwaves. Plasma Science and Technology, 18(10), 987.

18. Morgan. (2022). Morgan database. Diakses pada 29 Agustus 2022, URL:

19. Biagi. (2022). Biagi database. Diakses pada 29 Agustus 2022, URL:

20. Triniti. (2022). Triniti database. Diakses pada 29 Agustus 2022, URL:

21. Itikawa. (2022). Itikawa database. Diakses pada 29 Agustus 2022, URL:

22. Lebedev, Y. A., & Epshtein, I. L. (1995). Simulation of microwave plasma in hydrogen. Journal-Moscow Physical Society, 5, 103–120.

23. Zhigang, L. I., Zhongcai, Y. U. A. N., Jiachun, W. A. N. G., & Jiaming, S. H. I. (2017). Simulation of propagation of the HPM in the low-pressure argon plasma. Plasma Science and Technology, 20(2), 025401.

24. Meindl, A., Loehle, S., Kistner, I., Schulz, A., & Fasoulas, S. (2019). Two-Photon Induced Polarization Spectroscopy for Atomic Oxygen in Atmospheric Plasma and Xenon. AIAA Scitech 2019 Forum, 1506.

25. Georgieva, V., Berthelot, A., Silva, T., Kolev, S., Graef, W., Britun, N., ... & Delplancke‐Ogletree, M. P. (2017). Understanding microwave surface‐wave sustained plasmas at intermediate pressure by 2D modeling and experiments. Plasma processes and polymers, 14(4-5), 1600185.

26. Nowakowska, H., Jasinski, M., Debicki, P. S., & Mizeraczyk, J. (2011). Numerical analysis and optimization of power coupling efficiency in waveguide-based microwave plasma source. IEEE Transactions on Plasma Science, 39(10), 1935–1942.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: