STUDI KOMPUTASI KARAKTERISTIK OPTIK CYANIDIN SEBAGAI SENSITISER DENGAN PELARUT ETHANOL, AIR, DAN ACETONITRILE

Elvan Yuniarti, Ai Nurlaela

Abstract


Cyanidin molecule is a type of anthocyanin that has the potential as a sensitizer for dye sensitiser solar cell (DSSC). This molecule is contained in blueberries, grapes, raspberries, and others. This study aims to determine cyanidin molecules' molecular orbitals and HOMO-LUMO energy levels with ethanol, water, and acetonitrile. In addition, this study aims to determine the optical properties of cyanidin dye with ethanol, water, and acetonitrile as solvents. The method used in this research is density functional theory (DFT) and TD-DFT/UB3LYP using Orca.2.02 and quantum espresso applications. The results obtained in the molecular orbitals of cyanidin with various solvents (ethanol, water, acetonitrile) obtained energy gap: 2.8 eV, 2.4 eV, and 3.2 eV. The results of UV-Vis absorption spectra (ethanol, water, acetonitrile) have the same wavelength (158.80 nm – 271.10 nm, 362.10 nm, 453.60 nm) but the intensity is different. Likewise the results of theinfra red spectra (1138 cm-1 – 1486 cm-1), and the Raman spectra (1141 cm-1 – 1606 cm-1) for different solvents have almost the same wave number.

Keywords


Cyanidin; DFT-TDDFT; Energy Gap; Infrared; Raman; UV-Vis

References


1. Baibarac, M., Smaranda, I., Nila, A., & Serbschi, C. (2019). Optical properties of folic acid in phosphate buffer solutions: the influence of pH and UV irradiation on the UV-VIS absorption spectra and photoluminescence. Scientific Reports, 9(1), 14278.

2. Imelda, E., Aziz, H., Santoni, A., & Utami, N. (2020). The modification of cyanidin-based dyes to improve the performance of dye sensitized solar cells (DSSCs). Rasayan Journal of Chemistry, 13(1), 121–130.

3. Galappaththi, K., Lim, A., Ekanayake, P., & Petra, M. I. (2017). Cyanidin-based novel organic sensitizer for efficient dye-sensitized solar cells: DFT/TDDFT study. International Journal of Photoenergy, 2017.

4. Andualem, A., & Demiss, S. (2018). Review on dye-sensitized solar cells (DSSCs). Edelweiss Appli Sci Tech, 2, 145–150.

5. Pablo, C. C. V., Enrique, R. R., José, A. R. G., Enrique, M. P., Juan, L. H., & Eddie, N. A. M. (2016). Construction of dye-sensitized solar cells (DSSC) with natural pigments. Materials Today: Proceedings, 3(2), 194–200.

6. Ammar, A. M., Mohamed, H. S., Yousef, M. M., Abdel-Hafez, G. M., Hassanien, A. S., & Khalil, A. S. (2019). Dye-sensitized solar cells (DSSCs) based on extracted natural dyes. Journal of Nanomaterials, 2019.

7. Maulana, M. F., Yuniarti, E., Nurlaela, A., & Saptari, S. A. (2021). Dye Sensitized Solar Cell (DSSC) Efficiency Derived from Natural Source. Jurnal Fisika dan Aplikasinya, 17(3), 68–73.

8. Rahman, I. A., & Purqon, A. (2015). Studi Density Functional Theory (DFT) dan Aplikasinya Pada Perhitungan Struktur Elektronik Monolayer MoS2. Prosiding SKF 2015, 497–503.

9. Wulandari, A., Afrizal, A., Emriadi, E., & Efdi, M. (2020). Studi komputasi terhadap struktur, sifat antioksidan, toksisitas dan skor obat dari scopoletin dan turunannya. Chempublish Journal, 5(1), 77–92.

10. Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of chemical research, 42(11), 1819–1826.

11. Antosiewicz, J. M., & Shugar, D. (2016). UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: Basic principles and properties of tyrosine chromophore. Biophysical Reviews, 8(2), 151–161.

12. Ahliha, A. H., Nurosyid, F., Supriyanto, A., & Kusumaningsih, T. (2018, March). Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC). IOP Conference Series: Materials Science and Engineering, 333(1), 012018.

13. Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118.

14. Jin, Z., Chu, Q., Xu, W., Cai, H., Ji, W., Wang, G., ... & Zhang, X. (2018). All-fiber Raman biosensor by combining reflection. and transmission mode. IEEE Photonics Technology Letters, 30(4), 387–390.

15. Xu, C., & Wang, Y. (2012). Collagen cross-linking increases its biodegradation resistance in wet dentin bonding. The journal of adhesive dentistry, 14(1), 11.




DOI: http://dx.doi.org/10.31258/jkfi.20.1.39-48

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image