Jesi Pebralia, Rustan Rustan, Rizqa Raaiqa Bintana, Iful Amri


In this study, a forest fire monitoring system based on IoT has been developed where the parameters used include temperature, wind speed, air humidity, and hotspots. These physical parameters are measured in real time using sensors installed in locations prone to forest fires. The sensor measurement data sent and processed by the Arduino Uno microcontroller and sent to the server using the Internet of Things (IoT). The forest fire monitoring system developed has a high level of accuracy, where the temperature sensor has an accuracy of 99.9%, the air humidity sensor has an accuracy of 97.85%, and the wind speed sensor has an accuracy of 90.70%. The hotspot detection system also has good performance, where the sensor can detect the presence of hotspot in real time. The development of an IoT system for monitoring four forest fire parameters was made using the Blynk application. The system can work well where data from the four forest fire parameters can be monitored in real time via computer devices or via smartphones.


Forest; Fireforest; Land; Mitigation


1. BNPB. (2019). Data Informasi Bencana Indonesia (DIBI) (Internet). Badan Nasional Penanggulangan Bencana. (diakses tanggal 25 Juni 2022). URL:

2. KLHK. (2019). Analisa Data Luas Areal Kebakaran Hutan dan Lahan Tahun 2019. Direktorat Jenderal Planologi Kehutanan dan Tata Lingkungan.

3. Harrison, M. E., Page, S. E., & Limin, S. H. (2009). The global impact of Indonesian forest fires. Biologist, 56(3), 156–163.

4. Syaufina, L. (2018). Forest and land fires in Indonesia: Assessment and mitigation. Integrating Disaster Science and Management, 109–121.

5. Sudibyakto, S. S. (2003). Anomali Iklim Dan Mitigasi Kebakaran Hutan di Indonesia. Majalah Geografi Indonesia, 17(1), 71–80.

6. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., ... & Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.

7. Leuenberger, M., Parente, J., Tonini, M., Pereira, M. G., & Kanevski, M. (2018). Wildfire susceptibility mapping: Deterministic vs. stochastic approaches. Environmental Modelling & Software, 101, 194–203.

8. Miller, C., & Ager, A. A. (2012). A review of recent advances in risk analysis for wildfire management. International journal of wildland fire, 22(1), 1–14.

9. Keoh, S. L., Kumar, S. S., & Tschofenig, H. (2014). Securing the internet of things: A standardization perspective. IEEE Internet of things Journal, 1(3), 265–275.

10. Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: