PEMODELAN KECEPATAN ALIRAN DARAH PADA DOMAIN MENYERUPAI PEMBULUH DARAH DENGAN FEATOOL MULTIPHYSICS

Andika Thoibah, Defrianto Defrianto, Saktioto Saktioto

Abstract


Currently, computer-based simulation methods are widely used in blood flow analysis. The application of this method has been widely used in modeling blood vessels. This article presents an example of a simple blood vessel modeling to determine the velocity of blood flow to the viscosity of blood in the blood vessels. The mathematical model of human blood flow through vascular ramifications was studied using finite element analysis (FEA), which is applied to the stable two-dimensional flow of viscous fluids through various shapes. Flow through a two-dimensional model of aortic vessels, capillaries, and veins is simulated. The velocity distribution through the blood vessels is calculated. The validity of the calculation method is determined by comparing the numerical results with other results. The implementation of the Navier-Stokes equation in a vascular model using the finite element method shows that the velocity of blood flow depends on the viscosity. The higher the viscosity of the blood, the slower the rate of blood flow in the veins.

Keywords


Navier-Stokes; Finite Element Method; Veins; FEATool

References


1. Sa’adah, S. (2018). Sistem peredaran darah manusia. UIN Sunan Gunung Djati. Bandung.

2. Meylanda, M. (2021). Hubungan umur, aktifitas fisik, status merokok, kepatuhan minum obat dan kontrol tekanan darah dengan status hipertensi. Doctoral Dissertation, Universitas Siliwangi.

3. Rani, D. M., Pranata, L., Anggraini, N. L., Siringoringo, L., Aji, Y. G. T., Rahmi, U., ... & Purba, D. H. (2022). Anatomi fisiologi tubuh manusia. Yayasan Kita Menulis.

4. Asih, T. S. N., Waluya, B., & Supriyono, S. (2018). Perbandingan finite difference method dan finite element method dalam mencari solusi persamaan diferensial parsial. PRISMA, Prosiding Seminar Nasional Matematika, 1, 885–888).

5. Kosasih, P. B. (2012). Teori dan aplikasi metode elemen hingga. Yogyakarta: Andi Publisher.

6. Welty, J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G. (2004). Dasar-dasar fenomena transport. Edisi keempat terjemahan. Penerbit Erlangga. Jakarta.

7. Setia, B. R. (2022). Simulasi kerusakan tubrukan pada kapal VLCC (very large crude carrier) terhadap kekuatan membujur= simulation of VLCC (very large crude carrier) collision damage against to the longitudinal strength. Doctoral dissertation, Universitas Hasanuddin.

8. Tiwow, V. A., & Malago, J. D. (2015). Penerapan persamaan Navier-Stokes untuk kasus aliran fluida laminer pada pipa tidak horizontal. Jurnal Sains, Matematika, dan Pembelajarannya (SAINSMAT), 4(1), 51–56.

9. Defrianto, D., Saktioto, T., Hikma, N., Soerbakti, Y., Irawan, D., Okfalisa, O., ... & Hanto, D. (2022). External perspective of lung airflow model through diaphragm breathing sensor using fiber optic elastic belt. Indian Journal of Pure & Applied Physics (IJPAP), 60(7), 561–566.

10. Multiphysics, C. O. M. S. O. L. (2014). Fluid structure interaction in a network of blood vessels. Structural mechanics module model library manual, 1.




DOI: http://dx.doi.org/10.31258/jkfi.20.1.19-24

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image