SINTESIS KARBON BERPORI BERBASIS DAUN JERUK NIPIS (Citrus Aurentifolia S.) SEBAGAI MATERIAL ELEKTRODA UNTUK APLIKASI SUPERKAPASITOR
Abstract
In this study, the electrode material was successfully made from activated carbon based on lime leaf biomass with variations in physical activation temperature of 800 ˚C, 850 ˚C, and 900 ˚C for supercapacitor applications. Porous carbon was synthesized through pre-carbonization steps, chemical activation using ZnCl2 activator, carbonization using N2 gas at a temperature of 600 ˚C, and physical activation using CO2. Density analysis confirmed the potential for the DJN-850 sample to have a high shrinkage of 52.24%. X-ray diffraction shows an amorphous structure of carbon characterized by broading peaks at 2θ=22° and 24°. Scanning electron microscopy analysis performed that the optimized sample possessed rich meso-,macropores followed by a high carbon content of 90.25%. The Fourier spectroscopic transformation test results identified the presence of functional groups O-H, C-O, C-H, C=C, and C≡C in the sample. The precursor activated at 850 C possessed a specific surface area of 675.129 m2 g-1 with adjusting micro-mesopore. Furthermore, the electrochemical properties of the samples were measured using cyclic voltammetry and galvanostatic charge-discharge with specific capacitances of 144.14 F g-1 and 189 F g-1, respectively.
.
Keywords: biomass precursor; Citrus aurentifolia S., carbon porous, electrode material, supercapacitor
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Hu, C. (2008). Fluid coke derived activated carbon as electrode material for electrochemical double layer capacitor. Thesis, University of Toronto.
2. Taer, E., Syech, R., & Taslim, R. (2015). Sifat elektrokimia superkapasitor menggunakan metode charge discharge untuk elektroda karbon dari kayu karet. Respitory University of Riau.
3. Babel, K., & Jurewicz, K. (2004). KOH activated carbon fabrics as supercapacitor material. J. Phys. Chem. Solids, 65(2-3), 275–280.
4. Fellman, B. A., Atieh, M., & Wang, E. N. (2010). Carbon-based electric double layer capacitors for water desalination. Int. Conf. Nanochannels, Microchannels, and Minichannels, 54501, 275–279.
5. Aripin, H., et al. (2010). Sago waste based activated carbon film as an electrode material for electric double layer capacitor. Open Mater. Sci. J., 4(1).
6. Kharismayanti, A. (2015). Uji aktivitas antibakteri minyak atsiri daun jeruk nipis (Citrus aurantifolia (Christm. & Panz.) Swingle) terhadap Porphyromonas gingivalis ATCC 33277 secara in vitro. Skripsi, Universitas Jember.
7. Pelczar, M. J., & Chan, E. C. S. (1986). Basic fundamentals of microbiology 2. Translated by Hadioetomo RS, Imas T, Tjitrosomo SS, Figures SL. Jakarta: University of Indonesia Publishers. things, 489–522.
8. Dongmo, P. J., et al. (2009). Essential oils of Citrus aurantifolia from Cameroon and their antifungal activity against Phaeoramularia angolensis. African J. Agricultural Res., 4(4), 354–358.
9. Arifin, B., & Ibrahim, S. (2018). Struktur, bioaktivitas dan antioksidan flavonoid. Jurnal Zarah, 6(1), 21–29.
10. Taer, E., et al. (2018). Production of an activated carbon from a banana stem and its application as electrode materials for supercapacitors. Int. J. Electrochem. Sci., 13 8428–8439.
11. Taer, E., Hasanah, F., & Taslim, R. (2021). Nanofiber-enrich activated carbon coin derived from tofu dregs as electrode materials for supercapacitor. Commun. Sci. Technol., 6(1), 41–48.
12. Taer, E., Naipospos, V. M., & Taslim, R. (2020). Activated carbon monolith derived from coconut husk fiber as electrode material for supercapacitor energy storage. J. Phys.: Conf. Ser., 1655(1), 012164.
13. Miller, E. E., Hua, Y., & Tezel, F. H. (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage, 20, 30–40.
14. Qin, C., et al. (2020). Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J., 382, 122977.
15. Taer, E., et al. (2020). Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. Int. J. Energy Res., 44(13), 10192–10205.
16. Farma, R., et al. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technol., 132, 254–261.
17. Chen, H., et al. (2018). Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials. J. Mater. Sci., 53, 2669–2684.
18. Gao, X., Meng, T., & Zhao, X. (2017). Variations of soil organic carbon following land use change on deep‐loess hillsopes in China. Land Degradation and Development, 28(7), 1902–1912.
19. Girgis, B. S., et al. (2007). X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon Letters, 8(2), 95–100.
20. Azizah, U. (2016). Sintesis grafit terlapisi karbon (Citric acid) dengan variasi komposisi sebagai bahan anoda pada baterai ion lithium. Doctoral dissertation, UIN Maulana Malik Ibrahim.
21. Long, X., et al. (2020). Electrochemical sensors with antifouling properties for sensitive detection of isoproturon based on glassy carbon electrode modified with nafion membrane. Int. J. Electrochem. Sci, 15, 4964–4977.
22. Li, Y., Wang, X., & Cao, M. (2018). Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J. CO2 Utilization, 27, 204–216.
23. Kurniawan, et al. (2018). Pengaruh konsentrasi KOH terhadap sifat fisis dan elektrokimia elektroda karbon dari limbah kulit durian sebagai sel superkapasitor. Komunikasi Fisika Indonesia, 15(1), 62–66.
24. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia Analytical Chem., 10815–10837.
25. Xia, D., et al. (2019). Direct growth of carbon nanotubes doped with single atomic Fe–N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Functional Mater., 29(49), 1906174.
26. Dachriyanus, D. (2004). Analisis struktur senyawa organik secara spektroskopi. LPTIK Universitas Andalas.
27. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60(2), 309–319.
28. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chemi., 57(4), 603–619.
29. Zhang, H., et al. (2018). Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv., 4(1), eaao6657.
30. Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. J. Energy Storage, 20, 418–426.
31. Lu, W., et al. (2020). Activated carbon derived from pitaya peel for supercapacitor applications with high capacitance performance. Mater. Lett., 264, 127339.
32. Ying, Z., et al. (2020). A biomass-derived super-flexible hierarchically porous carbon film electrode prepared via environment-friendly ice-microcrystal pore-forming for supercapacitors. Chem. Commun., 56(73), 10730–10733.
DOI: http://dx.doi.org/10.31258/jkfi.20.1.9-18
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: