POTENSI DAUN JAHE MERAH SEBAGAI BAHAN DASAR PEMBUATAN ELEKTRODA SUPERKAPASITOR

Erman Taer, Juwita Ade Putri, Novi Yanti, Apriwandi Apriwandi, Rika Taslim

Abstract


Red ginger leaf waste (Zingiber Officinale Var Rubrum) has been successfully processed as an active carbon base material for supercapacitor electrodes. The process of making carbon electrodes starts from the preparation of the original material, drying, refining, chemical activation, integrated pyrolysis and neutralization. The focus of this research is on the chemical activator ZnCl2 which is used with different concentrations of (0.1 and 0.5) M. Activated carbon powder is printed using a press to produce carbon in the form of solid coins of uniform size. The optimization of the carbon element in the sample is carried out through a pyrolysis process at high temperature with a one-stage integrated technique. Where, carbonization in the N2 gas environment is carried out starting from room temperature 30°C up to 600°C followed by physical activation until the high temperature reaches 800°C in CO2 gas environment. Characterization of activated carbon samples from red ginger leaves begins with determining the amount of shrinkage that occurs in the pyrolysis process by measuring the mass, diameter and thickness of the carbon coins. Furthermore, the electrochemical properties were tested using two methods, namely cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) in a symmetrical two-electrode system. The electrochemical characterization was carried out under the influence of an aqueous electrolyte of 1M KOH and 1M Na2SO4 at a low potential window of 0-1 V. The optimum conditions of electrochemical properties were found in the red ginger leaf activated carbon sample with a ZnCl2 activator concentration of 0.5M for the electrolyte. KOH with a specific capacitance value of 115.9 F/g. while for electrolyte Na2SO4 found in ZnCl2 activator 0.1M with a value of 72 F/g. Through these results, red ginger leaves are known to have great potential as a base material for activated carbon electrodes to improve the performance of supercapacitors.


Keywords


Red Ginger Leaf; Supercapacitor; Carbon Electrode; Specific Capacitance

References


1. Taer, E., Padang, E., Yanti, N., & Taslim, R. (2021). Etlingera elatior leaf agricultural waste as activated carbon monolith for supercapacitor electrodes. Journal of Physics: Conference Series, 2049(1), 012072.

2. Darmawan, S. (2008). Sifat arang aktif tempurung kemiri dan pemanfaatannya sebagai penyerap emisi formaldehida papan serat berkerapatan sedang. Tesis, Institut Pertanian Bogor.

3. Pari, G., dan Sailah, I. 2001. Pari, G., & Sailah, I. (2001). Pembuatan Arang Aktif dari Sabut Kelapa Sawit dengan Bahan Pengaktif Nh4hco3 dan (Nh4) 2c03 Dosis Rendah 1. Jurnal Penelitian Hasil Hutan, 19(4), 231-244.

4. Taer, E., Apriwandi, A., Taslim, R., Agutino, A., & Yusra, D. A. (2020). Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology, 9(6), 13332-13340.

5. Febriyanto, P., Jerry, J., Satria, A. W., & Devianto, H. (2019). Pembuatan dan karakterisasi karbon aktif berbahan baku limbah kulit durian sebagai elektroda superkapasitor. Jurnal Integrasi Proses, 8(1), 19-24.

6. Gea, S., Muis, Y., Novita, T., & Piliang, A. F. (2018). Synthesis of carbon nanodots from cellulose nanocrystals oil palm empty fruit by pyrolysis method. Journal of Physics: Conference Series, 1120(1), 012071.

7. Hardi, A. D., Joni, R., Syukri, S., & Aziz, H. (2020). Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor. Jurnal Fisika Unand, 9(4), 479-486.

8. Ekasari, V., & Yudoyono, G. (2013). Fabrikasi DSSC dengan dye ekstrak jahe merah (Zingiber officinale linn var. rubrum) variasi larutan TiO2 nanopartikel berfase anatase dengan teknik pelapisan spin coating. Jurnal Sains dan Seni ITS, 2(1), B15-B20.

9. Sembiring, S. (2014). Preparasi dan Karakterisasi Bahan. Buku Ajar Jurusan Fisika Universitas Lampung: Universitas Lampung.

10. Yusriwandi, E. T., Farma, R., & Taer, E. (2017). Pembuatan dan Karakterisasi Elektroda Karbon Aktif dengan Karbonisasi dan Aktivasi Bertingkat Menggunakan Gas CO2 dan Uap Air. Edu Research, 6(1), 21-21.

11. Miller, E. E., Hua, Y., & Tezel, F. H. (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. Journal of Energy Storage, 20, 30-40.

12. Zhao, L., Cao, X., Zheng, W., Scott, J. W., Sharma, B. K., & Chen, X. (2016). Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. Acs Sustainable Chemistry & Engineering, 4(3), 1630-1636.

13. Song, K., Ni, H., & Fan, L. Z. (2017). Flexible graphene-based composite films for supercapacitors with tunable areal capacitance. Electrochimica Acta, 235, 233-241.

14. Ahmed, S., Ahmed, A., & Rafat, M. (2018). Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. Journal of Saudi Chemical Society, 22(8), 993-1002.

15. Taer, E., Yanti, N., Taslim, R., & Apriwandi, A. (2022). Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance. Journal of Materials Research and Technology, 19, 4721-4732.

16. Inal, I. I. G., & Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514, 145895.

17. Juliani, R. (2019). Carbon Electrodes from Corn Stalk Core for Supercapacitor Application. Journal of Technomaterial Physics, 1(1), 22-29.

18. Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation of capacitor’s electrode from cassava peel waste. Bioresource Technology, 101(10), 3534-3540.

19. Cao, Y., Wang, K., Wang, X., Gu, Z., Fan, Q., Gibbons, W., ... & Shrestha, M. (2016). Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochimica Acta, 212, 839-847.




DOI: http://dx.doi.org/10.31258/jkfi.19.2.119-127

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image