I Made Agus Satya


Hail is precipitation that is detrimental to the community, occurs in a short time, and is very local. It becomes a challenge to detect and give early warning. One method known to detect hail is the severe hail index (SHI) and its derivative product, the probability of severe hail (POSH). Utilize weather radar, the method detects by taking the value of the kinetic energy flux of hail by calculating the integration of the reflectivity weight and temperature flux from the freezing level to a temperature of -20ºC. This study aims to examine the spatial use of SHI and POSH methods to detect hail events in the West Java region. The results of SHI value obtained for 350 Jm-1s-1400 Jm-1s-1 for Depok and 280 Jm-1s-1320 Jm-1s-1 for Bogor, which met the threshold of average hail threshold of 373 Jm-1s-1. Then POSH obtained a 70% 80% probability for Depok and Bogor. Meanwhile, for Bandung, the SHI value is 12 Jm-1s-114 Jm-1s-1 and 0% for POSH. Concluded that hail detection utilizing SHI and POSH methods effectiveness, influenced by the distance to the radar so it requires other additional methods such as RGB Composite from satellite imagery as support. Spatial calculations can also reduce value bias and give more accurate location occurrences.


Severe Hail Index; Hail; Weather Radar; Himawari-8


1. Tjasyono, B. H. (2004). Klimatologi. Bandung: Penerbit ITB.

2. Nelson, S. P. (1983). The Influence of Storm Flow Structure on Hail Growth, Journal Atmospheric Science.

3. Zakir, A. (2008). Modul Praktis Analisis dan Prakiraan Cuaca. Jakarta: BMKG.

4. Battan, L. J. (1973). Radar Observation of the Atmosphere. Chicago: University of Chicago.

5. Rinehart, R. E. (2010). Radar Meteorologist. Nevada: Rinehart Publications.

6. Holleman, I. (2001). Hail detection using single-polarization radar. Ministerie van Verkeer en Waterstaat.

7. Witt, A., Eilts, M. D., Stumpf, G. J., Johnson, J. T., Mitchell, E. D. W., & Thomas, K. W. (1998). An enhanced hail detection algorithm for the WSR-88D. Weather and Forecasting, 13(2), 286–303.

8. Waldvogel, A., Schmid, W., & Federer, B. (1978). The kinetic energy of hailfalls. Part I: Hailstone spectra. Journal of Applied Meteorology (1962-1982), 515–520.

9. Ali, A., & Hidayati, S. (2015). Peringatan Dini Potensi Hujan Es menggunakan Metode Severe Hail Index berdasarkan Pengamatan Radar Cuaca Doppler. Prosiding Seminar Nasional Fisika. Jakarta

10. Kristianto, A., Arizona, I. J. S., Larasati, G., & Akib, K. (2018). Identifikasi Kejadian Hujan Es Menggunakan Citra Radar dan Satelit Cuaca. Prosiding PIT Ke-5 Riset Kebencanaan IABI Universitas Andalas Padang, 1, 349–362.

11. Lilesand, T. M., & Kiefer, R. W. (1990). Penginderaan Jauh dan Interpretasi Citra Terjemahan. Yogyakarta: Gajah Mada University Press.

12. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., ... & Yoshida, R. (2016). An introduction to Himawari-8/9 — Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151–183.

13. Shimizu, A. (2020). Newly proposed RGBs by Himawari-8 and some case studies. Meteorological Satellite Center Technical Note, (65).

14. Zawadzki, I. (1984). Factors affecting the precision of radar measurements of rain. In 22nd conference on radar meteorology, Zurich, Switzerland, 251–256.

DOI: http://dx.doi.org/10.31258/jkfi.19.3.161-168


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by: