Analysis of pressure distribution in cylindrical tube fluid flow using a fiber Bragg grating

Annisa Ratna Pertiwi, Saktioto Saktioto, Bambang Widiyatmoko, Dwi Hanto

Abstract


Fibre optic sensors have garnered considerable attention from scientists, leading to the extensive use of optical fibres as sensors for monitoring strain and temperature. The increasing adoption of fibre Bragg gratings (FBG) can be attributed to their enhanced sensitivity and rapid transmission speed. The objective of this study is to examine the pressure distribution of FBGs within a cylindrical tube while subjected to vibrations from a loudspeaker and the presence of hot water vapour. The given options were of two scenarios, first scenario had a tube without water vapour and a heart sound, while the second scenario included a tube with water vapour and a heart sound. In this experiment, we strategically placed the FBG at 20 different points along the cylindrical tube to accurately detect strain values at each position. The outcomes derived from these two scenarios illustrate that temperature and air vapour pressure exert an influence on the occurrence of sound, with the highest level of tension found when hot water vapour and heart sounds are present.

Keywords


Fiber Bragg grating; fluid flow; hot water vapor; sound; strain

Full Text:

PDF

References


1. Shekar, P. R., Latha, D. M., Kumari, K. & Pisipati, V. G. K. M. (2021). Optimal parameters for fiber Bragg gratings for sensing applications: A spectral study. SN Applied Sciences, 3(6), 666.

2. Veriyanti, V. & Saktioto, S. (2020). Tampilan birefringence pada gangguan pembengkokan serat optik komersial. Indonesian Physics Communication, 17(2), 97–103.

3. Hongyao, W. (2011). Coal mine disaster rescue life sign monitoring technology based on FBG and acceleration sensor. Procedia Engineering, 26, 2294–2300.

4. Fadilla, F. D. & Saktioto, S. (2021). Aplikasi sistem sensor fiber Bragg grating untuk pendeteksian simulasi denyut jantung. Indonesian Physics Communication, 18(2), 151–158.

5. Saktioto, S., Maulana, A. M., Yupapin, P. & Hairi, H. M. (2023). Analysis of fluid flow in a cylindrical tube using fiber Bragg grating. Science, Technology and Communication Journal, 4(1), 15–20.

6. Mishra, V., Lohar, M. & Amphawan, A. (2016). Improvement in temperature sensitivity of FBG by coating of different materials. Optik, 127(2), 825–828.

7. Vaeruza, I., Kurniansyah, K. E., Darma, F. & Yulianti, I. (2019). Fabrikasi sensor serat optik plastik untuk deteksi ion logam merkuri dalam air. Indonesian Physics Communication, 16(2), 123–129.

8. Zhang, Z. & Liu, C. (2017). Design of vibration sensor based on fiber Bragg grating. Photonic Sensors, 7(4), 345–349.

9. Ramadhan, K. & Saktioto, S. (2021). Integrasi chirping dan apodisasi bahan TOPAS untuk peningkatan kinerja sensor serat kisi Bragg. Indonesian Physics Communication, 18(2), 111–123.

10. Meyzia, B., Saktioto, S., Emrinaldi, T., Wanara, N., Hanto, D., Widiyatmoko, B. et al. (2024). Novel approach peak tracking method for FBG: Gaussian polynomial technique. Science, Technology and Communication Journal, 4(3).

11. Kouhrangiha, F., Kahrizi, M., & Khorasani, K. (2022). Structural health monitoring: modeling of simultaneous effects of strain, temperature, and vibration on the structure using a single apodized π-Phase shifted FBG sensor. Results in Optics, 9, 100323.

12. Ikhsan, R., Syahputra, R. F. & Saktioto, S. (2018). Analisis kompensasi dispersi menggunakan penguat Raman pada jaringan WDM (wavelength division multiplexing) dalam komunikasi serat optik. Indonesian Physics Communication, 15(2), 88–92.

13. Saktioto, S., Defrianto, D., Hikma, N., Soerbakti, Y., Irawan, D., Okfalisa, O. et al. (2022). External perspective of lung airflow model via diaphragm breathing sensor using fiber optic belt. The 4th Al-Noor International Conference for Science and Technology, 4(1), 1014.

14. Sutriyono, D. P. & Saktioto, S. (2017). Karakteristik pertumbuhan pelepah kelapa sawit dengan menggunakan fiber Bragg grating moda tunggal. Indonesian Physics Communication, 14(1), 1026–1031.

15. Saktioto, S., Nurpadilla, R., Meyzia, B., Hairi, H. M., Fadhali, M. M., & Yupapin, P. (2024). Characteristics of human voice vibrations based on FBG strains. Science, Technology and Communication Journal, 4(2), 31–36.

16. Presti, D. L., Massaroni, C., Leitao, C. S. J., Domingues, M. D. F., Sypabekova, M., Barrera, D. et al. (2020). Fiber bragg gratings for medical applications and future challenges: A review. IEEE Access, 8, 156863–156888.

17. Hillmer, H., Woidt, C., Kobylinskiy, A., Kraus, M., Istock, A., Iskhandar, M. S. et al. (2021). Miniaturized interferometric sensors with spectral tunability for optical fiber technology—A comparison of size requirements, performance, and new concepts. Photonics, 8(8), 332.

18. Li, R., Tan, Y., Chen, Y., Hong, L., & Zhou, Z. (2019). Investigation of sensitivity enhancing and temperature compensation for fiber Bragg grating (FBG)-based strain sensor. Optical Fiber Technology, 48, 199–206.

19. Li, T., Guo, J., Tan, Y. & Zhou, Z. (2020). Recent advances and tendency in fiber Bragg grating-based vibration sensor: A review. IEEE Sensors Journal, 20(20), 12074–12087.

20. Emrinaldi, T. & Saktioto. (2016). Penentuan nilai regangan Jembatan Siak I oleh kendaraan bermotor menggunakan fiber Bragg grating. Indonesian Physics Communication, 13(13), 919–926.

21. Anggelia, S., Rahmawati, R., Setiawati, A. & Kurniawati, W. (2023). Diving into the World of Sound and Light, Understanding Their Properties, Propagation and Uses. Jurnal Pendidikan Indonesia, 2(1), 119–125.

22. Klippel, W. (2020). Loudspeaker and headphone design approaches enabled by adaptive nonlinear control. Journal of the Audio Engineering Society, 68(6), 454–464.




DOI: http://dx.doi.org/10.31258/jkfi.21.2.109-114

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image