PENGGUNAAN PEMODELAN SUMBER PLASMA HELIUM PADA KEADAAN SETIMBANG UNTUK APLIKASI PLAK GIGI

Nandita Devira, Toto Saktioto

Abstract


Helium plasma source modelling was performed in order to obtain species density at balanced conditions under pressure of 1 atm. The software used in this modelling is matrix laboratory software (MATLAB). The equation used is a continuity equation that depends on the position and parameters of Arrhenius. Plasma temperatures used were 0.1 eV, 0.2 eV, 0.3 eV, and 0.5 eV. Species involved in a plasma consist of electrons, He, He+, He2+, He*, and He2*. The modelling results showed that the density value of He species increases as temperature increases. It is noted that the obtained the density of He (nHe) when reaching a balanced condition at the temperature  of T = 0.1, 0.2, 0.3, and 0.5 are 3.0137 × 1025, 7.9506 × 1026, nHe = 1.6489 × 1028, and 7.1384 × 1029, respectively. This is because He is a noble gas that is monatomic and chemically inert. Thus resulting in stable plasma production and gaining an increase in density value. Plasma-charged species are the main media that cause the disinfection of microorganisms because they can break the hydrogen bond of the organic molecules that make up the dental plaque. So the influence of charged species when applied to dental plaque has more effective than that of neutral reactive species.

Keywords


Helium Plasma; Modelling; Density; Plasma Temperature; Dental Plaque

References


1. Piel, A. (2017). Plasma physics: an introduction to laboratory, space, and fusion plasmas. Berlin: Springer.

2. Bogaerts, A., Neyts, E., Gijbels, R., & Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609–658.

3. Weltmann, K. D., Kolb, J. F., Holub, M., Uhrlandt, D., Šimek, M., Ostrikov, K., Hamaguchi, S., Cvelbar, U., Černá,k M., Locke, B., Fridman, A., & Becker, K. (2019). The future for plasma science and technology. Plasma Processes and Polymers, 16(1), 1800118.

4. Singh, S., Chandra, R., Tripathi, S., Rahman, H., Tripathi, P., Jain, A., & Gupta, P. (2014). The bright future of dentistry with cold plasma—review. J Dent Med Sci, 13, 6–13.

5. Wiradona, I., Widjanarko, B., & Syamsulhuda, B. M. (2013). Pengaruh perilaku menggosok gigi terhadap plak gigi pada siswa kelas IV dan V di SDN Wilayah Kecamatan Gajahmungkur Semarang. Jurnal Promosi Kesehatan Indonesia, 8(1), 59–68.

6. Lee, H. W., Nam, S. H., Mohamed, A. A. H., Kim, G. C., & Lee, J. K. (2010). Atmospheric pressure plasma jet composed of three electrodes: application to tooth bleaching. Plasma Processes and Polymers, 7(3‐4), 274–280.

7. Jawaid, P., Rehman, M. U., Zhao, Q. L., Takeda, K., Ishikawa, K., Hori, M., Shimizu, T., & Kondo, T. (2016). Helium‐based cold atmospheric plasma‐induced reactive oxygen species‐mediated apoptotic pathway attenuated by platinum nanoparticles. Journal of Cellular and Molecular Medicine, 20(9), 1737–1748.

8. Sladek, R. E., Stoffels, E., Walraven, R., Tielbeek, P. J., & Koolhoven, R. A. (2004). Plasma treatment of dental cavities: a feasibility study. IEEE Transactions on plasma science, 32(4), 1540–1543.

9. Murakami, T., Niemi, K., Gans, T., O'Connell, D., & Graham, W. G. (2012). Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities. Plasma Sources Science and Technology, 22(1), 015003.

10. Petrova, T. B., Petrov, G. M., Boris, D. R., & Walton, S. G. (2017). Non-equilibrium steady-state kinetics of He-air atmospheric pressure plasmas. Physics of Plasmas, 24(1), 013501.

11. Liu, Y., Tan, Z., Chen, X., Li, X., Wang, X., Zhang, H., & Pan, J. (2018). An investigation of the control of electron energy in the atmospheric-pressure helium plasma jet. IEEE Transactions on Plasma Science, 46(8), 2865-2880.

12. Wang, L., Zheng, Y., & Jia, S. (2016). Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material. Physics of Plasmas, 23(10), 103504.

13. Liu, D. X., Bruggeman, P., Iza, F., Rong, M. Z., & Kong, M. G. (2010). Global model of low-temperature atmospheric-pressure He+ H2O plasmas. Plasma Sources Science and Technology, 19(2), 025018.

14. Yuan, X., & Raja, L. L. (2003). Computational study of capacitively coupled high-pressure glow discharges in helium. IEEE Transactions on Plasma Science, 31(4), 495-503.




DOI: http://dx.doi.org/10.31258/jkfi.19.1.11-18

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image