KAJIAN PENGARUH MESOSCALE CONVECTIVE COMPLEX DI PULAU JAWA TERHADAP CURAH HUJAN SAAT KEJADIAN BANJIR DI KENDAL PADA 26-27 JANUARI 2019

Muhammad Ikko Safrilda Maulana, Nur Irfan Wicaksono, Yosafat Donni Haryanto

Abstract


Mesoscale Convective Complex (MCC) merupakan bagian dari Mesoscale Convective System (MCS) yang karakteristiknya dapat diamati menggunakan citra satelit Himawari-8 kanal infrared. Dalam penelitian ini pengaruh MCC dihitung berdasarkan nilai estimasi curah hujan di pusat inti dan selimut awan terhadap jumlah curah hujan observasi dengan menerapkan metode Convective Stratiform Technique (CST) dan Modified Convective Stratiform Technique (MCST).CST merupakan metode estimasi curah hujan dengan pemisahan kelompok konvektif dan stratiform, sedangkan MCST merupakan modifikasi dari CST pada intensitas curah hujan dan luasan area lingkup piksel rata-ratanya. Kedua metode tersebut diverifikasi menggunakan data curah hujan observasi di Kendal dengan stasiun pengamatan yang terdekat dengan pusat inti dan selimut awan MCC. Tujuan penelitian ini yaituuntuk mengetahui pengaruh MCC di Pulau Jawa terhadap tingginya curah hujan saat kejadian banjir pada 26-27 Januari 2019 di Kendal. Hasil pengolahan estimasi curah hujan menunjukkan nilai curah hujan yang mendekati nilai observasi pada inti awan MCC 2 senilai 84,989 mm menggunakan metode CST. Meskipun nilai estimasi curah hujan di kedua metode cenderung underestimate, namun hasil verifikasi pengaruh MCC terhadap curah hujan di Kendal menunjukkan hubungan sedang hingga kuat pada metode CST dengan nilai korelasi berkisar antara 0,30 hingga 0,61. Sedangkan metode MCST berkisar antara 0,30 hingga 0,59 yang menunjukkan kategori lemah hingga sedang. Nilai error CST juga lebih kecil dibandingkan nilai error MCST dengan nilai yang berkisar antara 3,17 hingga 8,63. Sehingga metode CST lebih baik digunakan untuk mengestimasi curah hujan pada pusat inti MCC dan pusat selimut MCC.

Keywords


MCC; CST; MCST; Banjir

References


1. Sugiyono. (2004). Statistika untuk Penelitian. Bandung: Alfabeta.

2. American Meteorological Society. (2000). Glossary of Meteorology 2nd Edition. Diakses pada 31 Juli 2021, URL : https://glossary.ametsoc.org/wiki/Flood.

3. Fritsch, J. M., Kane, R. J., dan Chelius, C. R. (1986). The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States. Journal of Applied Meteorology and Climatology, 25, 1333-1345.

4. Ashley, W.S., Mote, T.L., Dixon, P.H., Trotter, S. L., Durkee, J. D., Powell, E. J.,et al. (2003). Effects of Mesoscale Convective Complex Rainfall on the Distriburion of Precipitation in the United States. Monthly Weather Review, 131, 3003-3017.

5. Adler, R. F., dan Negri, A. J.,A. (1988). Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. Journal of American Meteorological Society. 27(1), 30-51.

6. Endarwin. (2014). Modifikasi Convective Stratiform Technique dengan Kombinasi Data Satelit Gelombang Mikro Pasif dan Inframerah untuk Estimasi Curah Hujan di Indonesia. Disertasi Sains Kebumian. Institut Teknologi Bandung.

7. S.M., M. Ikko., F., Eriska., &M., Aditya. (2020). Analysis of Weather Condition During Flood in Kendal District Using Synop, METAR, and Himawari-8 GS Modelling Data (Case Study: 26-27 January 2019). Prosiding Seminar Nasional Fisika dan Aplikasinya. 273-292.

8. Maddox, R. A. (1980). Mesoscale Convective Complexes.Bull. Amer. Meteor. Soc., 61, 1374-1387.

9. Houze, R. A. Jr. (1993). Cloud Dynamics. Academic San Diego, Calif., 573.

10. Tjasyono HK, Bayong., Juaeni, Ina., & Harijono, Sri Woro B. (2007). Proses Meteorologis Bencana Banjir di Indonesia. Jurnal Meteorologi dan Geofisika. 8(2), 64-78.

11. Putri, N. S., Iwabuchi, H., dan Hayasaka, T. Notes., and correspondence. (2018). Evolution of Mesoscale System Properties as Derived from Himawari-8 High Resolution Data Analyses. Journal of Meteorological Society of Japan. 96B, 239-250.

12. Islam, M. N., Islam, A. K. M. S., Hayashi, T., Terao, T. Dan Uyeda, H. (2002). Application of a Method to Estimate Rainfall in Bangladesh Using GMS-5 Data. Journal of Natural Disaster Science. 24(2), 83-89.

13. Goldenberg, S. B., R. A. Houze, Jr., dan Churchill, D. D., (1990). Convective and Stratiform Components of a Winter Monsoon Cloud Cluster Determined from Geo-Synchronous Infrared Satellite Data. Journal of the Meteorological Society of Japan, 68, 37-63.

14. Sudjana. (1996).Teknik Analisis Regresi Dan Korelasi. Bandung : Tarsito.

15. Laing, A. G., dan Fritsch, J. M. (1997). The Global Population of Mesoscale Convective Complexes. Quarterly Journal of the Royal Meteorological Society, Vol 123, 389-405.

16. Trismidianto. (2018). Characterictics of the Oceanis MCC, Continental MCC, and Coastal MCC Over the Indonesian Maritime Continent. IOP Conference Series: Earth and Environmental Science.

17. Putra Perdana, Ilham F., Rismana, Yosza Indra., Prasetya, Ferdian Adhy., Mulsandi, Adi. (2019). Studi Kejadian Mesoscale Convective Complex (MCC) di Wilayah Papua Bagian Selatan Pada 9-10 Mei 2018. Jurnal Meteorologi Klimatologi dan Geofisika. 6(1).

18. Ismanto, Heri. (2011). Karakteristik Kompleks Konvektif Skala Meso di Benua Maritim. Tesis Sains Kebumian. Institut Teknologi Bandung.

19. Tjasyono HK, Bayong. (2012). Meteorologi Indonesia Vol. 1. Jakarta: BMKG.

20. BMKG. (2021). Data satelit cuaca kanal infrared BMKG. Diakses pada 1 Agustus 2021, URL : ftp://satelit.bmkg.go.id/.




DOI: http://dx.doi.org/10.31258/jkfi.18.3.217-224

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.