ANALISA SENSITIVITAS SENSOR TGS PADA HIDUNG ELEKTRONIK UNTUK IDENTIFIKASI GANODERMA DI BAGIAN AKAR KELAPA SAWIT

Mhd Feri Desfri, Minarni Minarni, Dewi Laila Sari, Dewi Anjarwati Mahmudah, Ihsan Okta Harmailil, Irfan Cahyadi

Abstract


Palm oil is one of the main commodities for Indonesia. It is important to identify the disease-causing the decline in productivity. Root rot disease that causes total damage to oil palm plants due to fungal infection G. boninense sp has volatile organic compounds that can be detected using an electronic nose. The electronic nose system is designed with 6 sensor arrays, namely TGS 2612, TGS 822, TGS 2611, TGS 2610, TGS 813, and TGS 2620 which are sensitive to certain VOC compounds. The sample used was infected and uninfected oil palm seedlings aged 4 months. The detection process is carried out on plant roots. Python program is used as a data acquisition system in voltage retrieval. The obtained voltage is processed and further analyzed using a trapezoidal area to determine the sensor response in the identification of Ganoderma. The results of processing using a trapezoidal plane show that TGS 2611 has a very good response. The TGS 2611 sensor has a higher trapezoidal area in identifying oil palm plants that are attacked by Ganoderma with 4 classifications, namely healthy, moderate, sick, and severe.

Keywords


Electronic Nose; TGS; Python; Trapezoidal Area; Palm Oil; Basal Stem Root

References


1. Zakaria, A., Shakaff, A. Y. M., Masnan, M. J., Saad, F. S. A., Adom, A. H., Ahmad, M. N., Jaafar M. N., Abdullah A. H., & Kamarudin, L. M. (2012). Improved maturity and ripeness classifications of magnifera indica cv. harumanis mangoes through sensor fusion of an electronic nose and acoustic sensor. Sensors, 12(5), 6023–6048.

2. Shiddiq, M., Sitohang, L. B., Husein, I. R., Ningsih, S. A., Hermonica, S., & Fadlilah, A. (2021). Hidung elektronik berbasis sensor gas MOS untuk karakterisasi kematangan buah kelapa sawit electronic nose based on mos gas sensor to characterize ripeness of oil palm fresh fruits. Jurnal Teknik Pertanian Lampung, 10(2), 170–182.

3. Sagita, P. P. (2015). Rancang bangun chamber sensor electronic nose. Skripsi Ilmu Komputer dan Elektronika, Universitas Gadjah Mada.

4. Simamora, J. (2017). Rancang bangun sistem pendeteksi kesegaran daging berdasarkan sensor bau dan warna. Skripsi Teknik Elektro, Institut Teknologi Sepuluh November.

5. LIPI. (2017). Kajian soal penting bagi pengembangan potensi kelapa sawit di Indonesia. Diakses pada 14 Juni 2020, URL: http://lipi.go.id/berita/single/Kajian-Sosial-Penting-bagi-Pengembangan-Potens i-Kelapa-Sawit-di-Indonesia/17528.

6. Djaenudin, D. (1993). Lahan marginal, tantangan, dan pemanfaatannya. Jurnal Penelitian dan Pengembangan Pertanian, 12(4), 79–86.

7. Semangun, H. (2008). Penyakit-penyakit tanaman perkebunan di Indonesia. Yogyakarta: UGM Press.

8. Susanto, A., Ginting, P. A., & Surianto, P. A. (2008). Pola penyebaran Ganoderma boninense Pat. pada perkebunan kelapa sawit (Elaeis guineensis Jacq.) di lahan gambut: studi kasus di PT. Anak Tasik Labuhan Batu Sumatera Utara. Jurnal Penelitian kelapa sawit, 16(3), 135–145.

9. Tian, J., Reinartz, P., d’Angelo, P., & Ehlers, M. (2013). Region-based automatic building and forest change detection on Cartosat-1 stereo imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 226–239.

10. Izzati, M. Z. N. A. & Abdullah, F. (2008). Disease suppression in Ganoderma-infected oil palm seedlings treated with Trichoderma harzianum. Plant Protection Science, 44(3), 101–107.

11. Balasubramanian, S., Panigrahi, S., Logue, C. M., Doetkott, C., Marchello, M., & Sherwood, J. S. (2008). Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef. Food Control, 19(3), 236–246.




DOI: http://dx.doi.org/10.31258/jkfi.19.1.1-6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image