EFEK LAPISAN GANDA ANTIREFLEKTIF UNTUK MENINGKATKAN TRANSMISI PHOTOVOLTAICS DARI SEL SURYA
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Sharma, R., Amit, G., & Ajit, V. (2017). Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. Journal of Nano and Electronic Physics.
2. Zhou, G., He, J., Gao, L., Ren, T., & Li, T. (2013). Superhydrophobic self-cleaning antireflective coatings on Fresnel lenses by integrating hydrophilic solid and hydrophobic hollow silica nanoparticles. RSC Advances, 3(44), 21789–21796.
3. Zhang, X. X., Cai, S., You, D., Yan, L. H., Lv, H. B., Yuan, X. D., & Jiang, B. (2013). Template‐free sol‐gel preparation of superhydrophobic ORMOSIL films for double‐wavelength broadband antireflective coatings. Advanced Functional Materials, 23(35), 4361–4365.
4. Prené, P., Priotton, J. J., Beaurain, L., & Belleville, P. (2000). Preparation of a sol-gel broadband antireflective and scratch-resistant coating for amplifier blastshields of the french laser LIL. Journal of Sol-Gel Science and Technology, 19(1), 533–537.
5. Zhang, L., Qiao, Z. A., Zheng, M., Huo, Q., & Sun, J. (2010). Rapid and substrate-independent layer-by-layer fabrication of antireflection-and antifogging-integrated coatings. Journal of Materials Chemistry, 20(29), 6125–6130.
6. Liang, Z., Li, W., Dong, B., Sun, Y., Tang, H., Zhao, L., & Wang, S. (2019). Double-function SiO2-DMS coating with antireflection and superhydrophobic surface. Chemical Physics Letters, 716, 211–214.
7. Slamet, W. (2010). Teknologi Sol Gel Pada Pembuatan Nano Kristalin Metal Oksida Untuk Aplikasi Sensor Gas. Seminar Rekayasa Kimia Dan Proses.
8. Fitriani, F., & Handani, S. (2017). Pengaruh Temperatur dan Waktu Putar Terhadap Sifat Optik Lapisan Tipis ZnO yang Dibuat dengan Metode Sol-Gel Spin Coating. Jurnal Fisika Unand, 6(2), 156–161.
9. Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735–758.
10. Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface science reports, 63(12), 515–582.
11. Pakdel, E., & Daoud, W. A. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. Journal of colloid and interface science, 401, 1–7.
12. Son, S., Hwang, S. H., Kim, C., Yun, J. Y., & Jang, J. (2013). Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS applied materials & interfaces, 5(11), 4815–4820.
13. Li, Y., Leung, P., Yao, L., Song, Q. W., & Newton, E. (2006). Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 62(1), 58–63.
14. Evans, P., & Sheel, D. W. (2007). Photoactive and antibacterial TiO2 thin films on stainless steel. Surface and Coatings Technology, 201(22-23), 9319–9324.
15. Saravanan, K., Ananthanarayanan, K., & Balaya, P. (2010). Mesoporous TiO 2 with high packing density for superior lithium storage. Energy & Environmental Science, 3(7), 939–948.
16. Sali, S., Kermadi, S., Zougar, L., Benzaoui, B., Saoula, N., Mahdid, K., ... & Boumaour, M. (2017). Nanocrystalline proprieties of TiO2 thin film deposited by ultrasonic spray pulverization as an anti-reflection coating for solar cells applications. Journal of Electrical Engineering, 68(7), 24.
17. Li, W., & Zhao, D. (2013). Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core–shell structures. Adv. Mater. 25, 142–149.
18. Jankiewicz, B. J., Jamiola, D., Choma, J., & Jaroniec, M. (2012). Silica–metal core–shell nanostructures. Advances in colloid and interface science, 170(1-2), 28–47.
19. Chen, Y., Zhong, S., Tan, M., & Shen, W. (2017). SiO 2 passivation layer grown by liquid phase deposition for silicon solar cell application. Frontiers in Energy, 11(1), 52–59.
20. Huang, H., Modanese, C., Sun, S., von Gastrow, G., Wang, J., Pasanen, T. P., ... & Savin, H. (2018). Effective passivation of p+ and n+ emitters using SiO2/Al2O3/SiNx stacks: Surface passivation mechanisms and application to industrial p-PERT bifacial Si solar cells. Solar Energy Materials and Solar Cells, 186, 356–364.
21. Preissler, N., Amkreutz, D., Dulanto, J., Töfflinger, J. A., Trinh, C. T., Trahms, M., ... & Schlatmann, R. (2018). Passivation of Liquid‐Phase Crystallized Silicon With PECVD‐SiNx and PECVD‐SiNx/SiOx. physica status solidi (a), 215(14), 1800239.
22. Huang, C. H., Bai, H., Liu, S. L., Huang, Y. L., & Tseng, Y. H. (2011). Synthesis of neutral SiO2/TiO2 hydrosol and its photocatalytic degradation of nitric oxide gas. Micro & Nano Letters, 6(8), 646–649.
23. Diop, M. M., Diaw, A., Mbengue, N., Ba, O., Diagne, M., Niasse, O. A., ... & Sarr, J. (2018). Optimization and modeling of antireflective layers for silicon solar cells: In search of optimal materials. Materials Sciences and Applications, 9(08), 705.
24. Zahid, M. A., Khokhar, M. Q., Cho, E. C., Cho, Y. H., & Yi, J. (2020). Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate: A Brief Review. Current Photovoltaic Research, 8(1), 1–5.
25. Lin, W., Zheng, J., Yan, L., & Zhang, X. (2018). Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass. Results in physics, 8, 532–536.
26. E. Hecht, (2001). Optics, 4th edition, Addiso- Wesley Publishing Company, New York.
27. Li, D., Huang, F., & Ding, S. (2011). Sol–gel preparation and characterization of nanoporous ZnO/SiO2 coatings with broadband antireflection properties. Applied surface science, 257(23), 9752–9756.
28. Sun, X., Tu, J., Li, L., Zhang, W., & Hu, K. (2020). Preparation of wide-angle and abrasion-resistant multi-layer antireflective coatings by MgF2 and SiO2 mixed sol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125106.
29. Sun, X., Xu, X., Song, G., Tu, J., Li, L., Yan, P., ... & Hu, K. (2020). Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol–gel combined with electron beam evaporation. Optical Materials, 101, 109739.
DOI: http://dx.doi.org/10.31258/jkfi.18.3.230-237
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: