PENGUNAAN PENCITRAAN MULTISPEKTRAL PADA PANJANG GELOMBANG 520 NM DAN 800 NM UNTUK MENGEVALUASI TINGKAT KEMATANGAN TBS KELAPA SAWIT
Abstract
Keywords
Full Text:
PDF (INDONESIA)References
1. Sheeja, P. S. & Ajay, G. A. J. (2016). Nondestructive quality evaluation for fruits and vegetables. Int. J. Mod. Trends Eng. Res., 3(8), 1–7.
2. Makky, M., Soni, P., & Salokhe, V. M. (2014). Automatic non-destructive quality inspection system for oil palm fruits. J. Int. Agrophys., 28, 319–329.
3. Nualwijit, N. & Lerslerwong, L. (2014). Post harvest ripening of oil palm fruit is accelerated by application of exogenous ethylene. J. Sci. Technol., 36(3), 255–259.
4. Kassim, M. S. M., Ismail, W. I. W., & Teik, L. H. (2014). Oil palm fruit classifications by using near infrared images. Res. J. Appl. Sci. Eng. Technol., 7(11), 2200–2207.
5. Hazir, M. H. M., Shariff, A. R. M., & Amirudin, M. D. (2011). Determination of oil palm fresh fruit brunch ripness-base on flavonoid konten and antocyanin content. Ind. Crops Prod., 36(1), 466–475.
6. Minarni, Salumbae, R., & Hasbi, Z. (2018). Implementasi Jaringan Syaraf Tiruan (JST) dan Pengolahan Citra untuk Klasifikasi Kematangan TBS Kelapa Sawit. Komunikasi Fisika Indonesia, 15(1), 36-45.
7. Fadilah, N., Mohamad-Saleh, J., Halim, Z. A., Ibrahim, H., & Ali, S. S. S. (2012). Intelligent color vision system for ripeness classification of oil. Sensors, 12(10), 14179–14195.
8. Silalahi, D. D., Reano, C. E., & Panopio, F. P. (2016). Near infrared spectroscopy: A rapid and non-destructive technique to assess tge ripness of oil palm (elaeis guiness jacq.) fresh fruit. J. Near Infrared Spectrosc., 24(2), 179–190.
9. Bensaeed, O. M., Shariff , A. M., Mahmud, A. B., Shafri, H., & Alfatni, M. (2014). Oil palm fruit grading using a hyperspectral device and machine learning algorithm. IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 22-23 April 2014, 1–22.
10. Junkwon, P., Takigawa, T., Okamoto, H., Hasegawa, H., Koike, M., Sakai, K., Siruntawineti, J., Chaeychomsri, W., Vanavichit, A., Tittinuchanon, P., & Bahalayodhin, B. (2009). Hyperspectral imaging for non-destructive determination of internal qualities for oil palm (Elaeis guiness jacq.var. tenera). J. Agric. Inf. Res., 18(3), 130–141.
11. Aboras, M., Amasha, H., & Ibraheem, I. (2015). Early detection of melanoma using multispectal imaging and artifical intelegence techniques. Am. J. Biomed. Life Sci., 3(2-3), 29–33.
12. Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. R. (2015). Determining quality and maturity of promeganates using multispecral imaging. J. Saudi Soc. Agric. Sci., 16(4), 322–331.
13. Liu, C., Liu, W., Lu, X., Chen, W., Yang, J., & Zheng, L. (2014). Aplication of multispectral imaging to determine quality attributes and ripness stage in strawberry fruit. PloS One, 9(2), 1–8.
14. Kuska, M. T., Behmann, J., & Mahlein, A. –K. (2018). Potential of hyperspectral imaging to detect and identify the impact of chemical warfare compounds on plant tissue. Pure Appl. Chem., 90(10), 1615–1624.
DOI: http://dx.doi.org/10.31258/jkfi.17.3.144-149
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: