PENGUNAAN PENCITRAAN MULTISPEKTRAL PADA PANJANG GELOMBANG 520 NM DAN 800 NM UNTUK MENGEVALUASI TINGKAT KEMATANGAN TBS KELAPA SAWIT

Sinta Afria Ningsih, Minarni Shiddiq, Dodi Sofyan Arief, Ikhsan Rahman Husein

Abstract


Oil palm fresh fruit brunch (FFB) are the main source of crude palm oil (CPO). Sorting and grading FFB are important in order to obtain high quality CPO. Multispecral imaging has been purposed to be implemented in high speed sorting machines due to less wavelength bandwidths used hence less processing time. This study was aimed to evaluate the ripeness levels of oil palm FFB based on relative reflectance intensity and fruit firmness. Multispectral images were acquired using two bandpass filters mounted in a filter wheel with wavelengths of 520 nm and 800 nm respectively. The image acquisition and processing were controlled using python based program. The samples consisted of 30 oil palm FFBs of Tenera varieties with three ripeness levels as unripe, ripe, and overripe. The result showed that the relatif reflectance intensity at wavelength of 520 nm is inversely proportional to the maturity level, on the other hand,  relatif reflectance intensity at wavelength of 800 nm is directly proportional to the maturity level. The relation between the firmness and ripeness level are inversely proportional. Relative reflectance intensity of the multispectral images at the wavelength of 800 nm had a better correlation to the palm fruit firmness than the image at the wavelength of 520 nm with the correlation coefficient (r) of -0.0198 at 520 nm and -0.8594 at 800 nm. it can be shown that the multispectral imaging is potensial to be implemented for FFB ripeness evaluation.

Keywords


Multispectral imaging; Filterwheel; Sorting; Python; Oil palm FFB; Firmness

Full Text:

PDF (INDONESIA)

References


1. Sheeja, P. S. & Ajay, G. A. J. (2016). Nondestructive quality evaluation for fruits and vegetables. Int. J. Mod. Trends Eng. Res., 3(8), 1–7.

2. Makky, M., Soni, P., & Salokhe, V. M. (2014). Automatic non-destructive quality inspection system for oil palm fruits. J. Int. Agrophys., 28, 319–329.

3. Nualwijit, N. & Lerslerwong, L. (2014). Post harvest ripening of oil palm fruit is accelerated by application of exogenous ethylene. J. Sci. Technol., 36(3), 255–259.

4. Kassim, M. S. M., Ismail, W. I. W., & Teik, L. H. (2014). Oil palm fruit classifications by using near infrared images. Res. J. Appl. Sci. Eng. Technol., 7(11), 2200–2207.

5. Hazir, M. H. M., Shariff, A. R. M., & Amirudin, M. D. (2011). Determination of oil palm fresh fruit brunch ripness-base on flavonoid konten and antocyanin content. Ind. Crops Prod., 36(1), 466–475.

6. Minarni, Salumbae, R., & Hasbi, Z. (2018). Implementasi Jaringan Syaraf Tiruan (JST) dan Pengolahan Citra untuk Klasifikasi Kematangan TBS Kelapa Sawit. Komunikasi Fisika Indonesia, 15(1), 36-45.

7. Fadilah, N., Mohamad-Saleh, J., Halim, Z. A., Ibrahim, H., & Ali, S. S. S. (2012). Intelligent color vision system for ripeness classification of oil. Sensors, 12(10), 14179–14195.

8. Silalahi, D. D., Reano, C. E., & Panopio, F. P. (2016). Near infrared spectroscopy: A rapid and non-destructive technique to assess tge ripness of oil palm (elaeis guiness jacq.) fresh fruit. J. Near Infrared Spectrosc., 24(2), 179–190.

9. Bensaeed, O. M., Shariff , A. M., Mahmud, A. B., Shafri, H., & Alfatni, M. (2014). Oil palm fruit grading using a hyperspectral device and machine learning algorithm. IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 22-23 April 2014, 1–22.

10. Junkwon, P., Takigawa, T., Okamoto, H., Hasegawa, H., Koike, M., Sakai, K., Siruntawineti, J., Chaeychomsri, W., Vanavichit, A., Tittinuchanon, P., & Bahalayodhin, B. (2009). Hyperspectral imaging for non-destructive determination of internal qualities for oil palm (Elaeis guiness jacq.var. tenera). J. Agric. Inf. Res., 18(3), 130–141.

11. Aboras, M., Amasha, H., & Ibraheem, I. (2015). Early detection of melanoma using multispectal imaging and artifical intelegence techniques. Am. J. Biomed. Life Sci., 3(2-3), 29–33.

12. Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. R. (2015). Determining quality and maturity of promeganates using multispecral imaging. J. Saudi Soc. Agric. Sci., 16(4), 322–331.

13. Liu, C., Liu, W., Lu, X., Chen, W., Yang, J., & Zheng, L. (2014). Aplication of multispectral imaging to determine quality attributes and ripness stage in strawberry fruit. PloS One, 9(2), 1–8.

14. Kuska, M. T., Behmann, J., & Mahlein, A. –K. (2018). Potential of hyperspectral imaging to detect and identify the impact of chemical warfare compounds on plant tissue. Pure Appl. Chem., 90(10), 1615–1624.




DOI: http://dx.doi.org/10.31258/jkfi.17.3.144-149

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image