FABRIKASI DAN KARAKTERISASI ELEKTRODA KARBON DARI BIOMASSA SERABUT BUAH NIPAH DENGAN VARIASI KONSENTRASI AKTIVATOR KOH
Abstract
Keywords
Full Text:
PDF (INDONESIA)References
1. Wei, L. & Yaslim, G. (2012). Nanostucttured actived carbon from natural precursors for electrical double layer capacitors. Nano Energy, 1, 552–565.
2. Farma, R. & Hasibuan, R. R. (2017). Karakterisasi sifat fisis dan elektrokimia sel superkapasitor dengan penumbuhan nanopartikel platinum di atas pengumpul arus. Komunikasi Fisika Indonesia, 14(2), 1067–1072.
3. Tetra, O. N., Aziz, H., Emriadi., Ibrahim. S., & Alif, A. (2018). Superkapasitor berbahan dasar karbon aktif dan larutan ionik sebagai elektrolit. Jurnal Zarah, 6(1), 39–46.
4. Tumimomor, F., Maddu, A., & Pari, G. (2017). Pemanfaatan karbon aktif dari bambu sebagai elektroda superkapasitor. Jurnal Ilmiah Sains, 17(1), 75–79.
5 Lutony, T. L. (1993). Tanaman sumber pemanis. Jakarta: PT. Penebar Swadaya.
6. Imammuddin, M., Soeparman, S., & Suprapto, W. (2018). Pengaruh temperatur karbonisasi terhadap mikrostruktur dan pembentukan kristal pada biokarbon eceng gondok sebagai bahan dasar absorber gelombang elektromagnetik radar. Jurnal Rekayasa Mesin, 9(2), 135–141.
7. Griffith, P. (1975). Chemical infrared fourir transform spectroscopy. New York: John Wiley and Sons.
8. Cullity BDSSR. (2001). Elements of x-ray diffraction. Upper Saddle River, NJ: Prentice Hall.
9. Yanuar, Iwantono, Taer, E., & Andriani, R. (2010). Pengaruh ketebalan elektroda terhadap nilai kapasitansi spesifik dan “Retained ratio” serbuk gergaji kayu karet untuk pembuatan superkapasitor. Prosiding Seminar Nasional Fisika II, Surabaya, Indonesia, 17 Juli 2010, C72-C78.
10. Taer, E., Yusra, H., Iwantono., & Taslim R. (2016). Analisa dimensi, densitas dan kapasitansi spesifik elektroda karbon superkapasitor dari bunga rumput gajah dengan variasi konsentrasi pengaktivan KOH. Jurnal Fisika dan Aplikasinya, 1(1), 45–48.
11. Islam, M. A., Asif, M., & Hameed, B. H. (2015). Pyrolysis kinetics of raw and hydrothermally carbonized karanj (pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresour. Technol., 179, 227–233.
12. Yang, H., Yan, R., Chen, H., & Lee, D. H. (2007). Characteristic of hemicellulose, cellulose, and lignin pyrolysis. Fuel, 86(12-13), 1781–1788.
13. Tsamba, A. J., Yang, W., & Blasiak, W. (2006). Pyrolisis characteristic and global kinetics of coconut and chasew nut shells. Fuel Process. Technol., 87(6), 523–530.
14. Farma, R., Deraman, I., Awitdrus, A., Talib, I. A., Taer, E., Basri, N.H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., 132, 254–261.
15. Kumar, K., Saxena, R. K., Kothari, R. D., Suri, K., Kaushik, N. K., & Bohra, J. N. (1997). Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon (New York, NY), 12(35), 1842–1844.
DOI: http://dx.doi.org/10.31258/jkfi.17.3.127-133
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: