PEMBUATAN ELEKTRODA KARBON AKTIF DARI TANDAN KOSONG BUAH AREN DENGAN VARIASI SUHU KARBONISASI
Abstract
The preparation and characterization of the physical properties of activated carbon electrodes derived from the biomass of empty palm fruit bunches were analyzed by varying the carbonization temperature. Biomass of empty palm fruit bunches is selected as a base material for making carbon electrodes throught a pre-carbonization process, chemical activation with KOH 0.5 M activator, carbonization process with variations in temperature 650 °C, 700 °C, 750 °C, and 800 °C under an N2 gas environment, and activated by CO2 gas at 900 °C. Reduce of carbon mass by 20.182 % and produce carbon powder. Thermogravimetry show that thermal resistance temperature of 307 °C a carbon powder. The density value of each carbon electrode for carbonization temperature of 650 °C, 700 °C, 750 °C and 800 °C is 0.557 g/cm3, 0.622 g/cm3, and 0.702 g/cm3, respectively. Microstructure analysis shows that amorphous structure for the activated carbon electrodesshowed by the presence of the peaks of 2θ around 24° and 44°.The results showed that the temperature of 700 °C is the best carbonization temperature in production of carbon electrodes from TKBA.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
1. Ahmed, S., Ahmed, A., & Rafat, M. (2019). Investigation on activated carbon derived from biomassa butnea monosperma and its application as a high performance supercapasitor Electroda. Journal of Energy Stronge, 26, 1–10.
2. Yin, L., Chen, Y., Zhou, X. L. D., Hou, B., & Cau, B. (2016). 3-dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapasitors. Materials and Design, 111, 44–50.
3. Wang, Y. & Yang, Y. (2019). superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics. Nano Energy, 56, 547–554.
4. Awasthi, P. G., Bhattarai, P. D., Maharjan, B., Kim, K., Park, H. C., & Kim, S. C. (2018). synthesis and characterizations of activated carbon from wisteria sinensis seeds biomass for energy stronge applications. Journal of Industrial and Engineering Chemistry, 24, 561–756.
5. Sun, G., Qiu, L., Zhu, M., Kang, K., & Guo, X. (2018). Activated carbons prepared by hydrothermal pretreatment and chemical activation of eucommia ulmoides wood for supercapacitors application. Industrial Crops and Products, 125, 41–49.
6. Mayyas, M. & Sahajwalla, V. (2019). Carbon nano-sponge with enhanced electrochemical properties: A new understanding of carbon activation. Chemistry Engineeringi, 358, 980–991.
7. Khan, J. H., Marpaung, F., Young, C., Lin, J., Islam, M.T., Alsheri, S. M., Ahmad, T., Alhokbany, N., Ariga, K., Shrestha, L. K., Yamauchi, Y., Wu, K. C. W., Hossain, M. S. A., & Kim, J. (2019). Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous Mesoporous Mater, 274, 251–256.
8. Buczek, B. (2016). Preparation of Active Carbon by Additional Activation with Potassium Hydroxide and Characterization of Their Properties. Advances in Materials Science and Engineering, 2016, 1–4.
9. Putri, M. S. D., Awitdrus, A., & Manullang, R. K. (2020). Penyerapan logam berat Pb Dan Cu menggunakan karbon aktif berbasis mahkota nanas dengan variasi konsentrasi kalium hidroksida. Komunikasi Fisika Indonesia, 17(1), 30–34.
10. Kartikasari, N., Farma, R., & Awitdrus, A. (2018). Pengaruh aktivasi kimia dengan bantuan iradiasi gelombang mikro terhadap sifat fisis karbon aktif dari sekam padi sebagai adsorben. Komunikasi Fisika Indonesia, 15(1), 71–76.
11. Saputrina, T. T., Iwantono, I., Awitdrus, A., & Umar, A. A. (2020). Performances of dye-sensitized solar cell (DSSC) with working electrode of aluminum-doped ZnO nanorods. Science, Technology & Communication Journal, 1(1), 1–7.
12. Hidayat, T., Dewi, R., & Hamzah, Y. (2021). Effect of holding time on optical structure properties of Ba (Zr0. 5Ti0. 5) O3 thin film using sol-gel method. Science, Technology & Communication Journal, 1(2), 59–66.
13. Ayinla, T. R., Dennis, O. J., Zaid, M. H., Sanusi, K. Y., Usman, F., & Adebayo, L. L. (2019). A Review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production, 229, 1427–1442.
14. Maghfirah, I., Santoso, H., Syauqi, A. (2019). Uji rendemen nira dan gula semut aren (Arange Pinnata Merr.) hasil penyadapan pagi dan sore hari. E-Jurnal Ilmiah Sains Alami, 2, 8–15.
15. Suryansyah., N., & Radian. (2018). Strategi pengembangan agribisnis gula aren di Kabupaten Sekadau. Jurnal Social Economic of Agriculture, 7, 62–72
16. Ilyas, A. R., Sapuan, M. S., & Ishak, R. M. (2018). isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arange Pinnata), 181, 1038–1051.
17. Basri, H. N., Deraman, M., Kanwal, S., Talib, A. I., & Manjunatha, G. J. (2013). Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. SciverseSciencedirec, 59, 370–379.
18. Bani, M., Santjojo, H. D., & Masruroh. (2013). pengaruh suhu reaksi reduksi terhadap pemurnian karbon berbahan dasar tempurung kelapa. Natural B, 2, 159–163.
19. Farma, R., Deraman, M., Awitdrus, Talib, I. A., Omar, R., Manjunatha, J. G., Ishak, M. M., & Dollah, B. N. M. (2013). Physical and electrochemical properation of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem Sci., 8, 257–273.
20. Feng, H., Hu, H., Dong, H., Xia, Y., Cai, B., Lei, Y., & Zheng, M. (2016). Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesisroute and its improved electrochemical properties for high-performance supercapasitors. Journal Power source, 302, 164–173.
DOI: http://dx.doi.org/10.31258/jkfi.18.1.58-63
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing by: