PREDIKSI CURAH HUJAN DAN KELEMBABAN UDARA KOTA PEKANBARU MENGGUNAKAN METODE MONTE CARLO

Melani Seprima, Defrianto Defrianto

Abstract


Weather prediction is important in our lives and can minimize the impact that will occur in the future. Rainfaal and humidity greatly affect the weather conditions in Indonesia. Accuracy in the prediction of rainfall and humidity is very important because it can be used in various interests. The data used are the monthly average data of rainfall and humidity in the city of Pekanbaru in 20142018 obtained from BMKG Pekanbaru, then the monthly average data will be processed using a MATLAB R2015a based program so that an average rainfall prediction simulation is obtained and air humidity in 20192023. MATLAB R2015a based program using the monte carlo method and has error value 0.0887913.


Keywords


Prediction; Weather; Monte Carlo; MATLAB

Full Text:

PDF (INDONESIA)

References


1. Gurfinkel, Y. I., Ozheredov, V. A., Breus, T. K., & Sasonko, M. L. (2018). The effects of space and terrestrial weather factors on arterial stiffness and endothelial function in humans. Biophysics, 63(2), 299–306.

2. Juandi, M., Gultom, K., & Edisar, M. (2016). Model volume resapan air hujan pada sumur resapan di Kecamatan Rumbai Kota Pekanbaru. Komunikasi Fisika Indonesia, 13(12), 787–792.

3. Sucahyono, D., Pawitan, H., & Wigena, A. H. (2015). Model prakiraan curah hujan bulanan di wilayah Jawa bagian Utara dengan prediktor Suhu Muka Laut (SML) dan Outgoing Longwave Radiation (OLR). Jurnal Meteorologi dan Geofisika, 10(2), 98–110.

4. Wahyuni, S. & Umar, L. (2016). Detektor kelembaban gabah berdasarkan pengukuran kapasitansi. Komunikasi Fisika Indonesia, 13(13), 912–918.

5. Basuki, A. (2004). Modelling and Simulation. Jakarta Timur: IPTAQ Mulia Media.

6. Prawirowardoyo, S. (1996). Metereologi. Bandung: Institut Teknologi Bandung.

7. Tjasyono, B. (2004). Klimatologi. Bandung: Institut Teknologi Bandung.

8. Syech, R., Malik, U., & Fitriani, R. Analisis pengaruh partikulat matter PM10 terhadap suhu, kelembaban udara dan kecepatan angin di daerah kulim kota pekanbaru. Komunikasi Fisika Indonesia, 14(2), 1032–1036.

9. Widodo, P. (2012). Penerapan Soft Computing dengan Matlab. Bandung: Rekayasa Sains.

10. Muttaqin R. (2008). Pemanfaatan Metode Monte Carlo untuk Analisis Perubahan Lahan Secara Spasial. Tesis Teknik Geodesi dan Geomatika, Institut Teknologi Bandung.




DOI: http://dx.doi.org/10.31258/jkfi.17.3.134-138

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image