PREDIKSI KADAR PARTICULATE MATTER (PM10) MENGGUNAKAN JARINGAN SYARAF TIRUAN DI KOTA PEKANBARU

Wima Puspita, Defrianto Defrianto, Yan Soerbakti

Abstract


This aims of this study is to predict particulate matter (PM10) levels in Pekanbaru using back propagation artificial neural networks (ANN) based on weather factors. The data used in the form of data from 2014 2017 as training data and 2018 data as test data. The architecture proposed is composed of 5 5 1 neurons and uses the logig-logsig-purelin functions. The training process produces a traincgb with a small MSE value and in the process of testing the PM10 prediction compared to BMKG data has an average error of 26.9062%.


Keywords


Particulate Matter (PM10); Artificial Neural Network (ANN); Back Propagation; Prediction

References


1. Provinsi Riau, BPS. (2016). Provinsi riau dalam angka 2016. Pekanbaru: BPS Provinsi Riau.

2. Syech, R., Restina, R., & Malik, U. (2018). pemanfaatan karbon sebagai filter untuk pengendalian pencemaran air sungai oleh logam Zn (seng) dari limbah pabrik kelapa sawit di Kabupaten Kuansing. Komunikasi Fisika Indonesia, 15(1), 28–35.

3. Fitriani, R., Muhammad, J., & Rini, A. S. (2020). Investigation of the Distribution of Aquifers and Groundwater Quality in the Village of Rimbo Panjang, Kampar District. Science, Technology & Communication Journal, 1(1), 8–15.

4. Ruslinda, Y., Gunawan, H., Goembira, F., & Wulandari, S., (2016). Pengaruh jumlah kendaraan berbahan bakar bensin terhadap konsentrasi timbal (Pb) di udara ambien jalan raya Padang. Seminar Nasional Sains dan Teknologi Lingkungan II, 162–167.

5. Soedomo, M. (2001). Kumpulan Karya Ilmiah tentang Pencemaran Udara. Bandung: Penerbit ITB.

6. Syech, R., Malik, U., & Fitriani, R. (2018). Analisis pengaruh partikulat matter PM10. terhadap suhu, kelembaban udara dan kecepatan angin di daerah kulim kota pekanbaru. Komunikasi Fisika Indonesia, 14(2), 1032–1036.

7. Seprima, M., & Defrianto, D. Prediksi Curah Hujan dan Kelembaban Udara Kota Pekanbaru Menggunakan Metode Monte Carlo. Komunikasi Fisika Indonesia, 17(3), 134–138.

8. Pertiwi, M., Muhammad, J., Farma, R., & Saktioto, S. (2020). Analysis of Shallow Well Depth Prediction: A Study of Temporal Variation of GRACE Satellite Data in Tampan District-Pekanbaru, Indonesia. Science, Technology & Communication Journal, 1(1), 27–36.

9. Puspitaningrum, D. (2006). Pengantar Jaringan Syaraf Tiruan. C.V Andi Offset.

10. Siang, J. J. (2005). Jaringan Syaraf Tiruan dan Pemogramannya dengan MATLAB. Yogyakarta: Penerbit Andi.

11. Aprijon, A. (2021). Annual premium of life in insurance with uniform assumptions. Science, Technology & Communication Journal, 1(2), 67-73.

12. Rahmawati, R., Rahma, A. N., & Septia, W. (2021). Prediction of rupiah exchange rate against australian dollar using the Chen fuzzy time series method. Science, Technology & Communication Journal, 1(2), 74-81.




DOI: http://dx.doi.org/10.31258/jkfi.18.1.1-4

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image